A Paravirtualized Approach
to Content-Based Page Sharing

Jacos Faser KrosTer JespErR KRISTENSEN Arne MEesLHOLM

Department of Computer Science, Aalborg University

Fredrik Bajers Vej 7E, 9220 Aalborg (), Denmark
{jk|cableman|mejlholm}@cs.aau.dk

June 4, 2007

Abstract

Recent advances in virtualization and hardware costs has made virtualiza-
tion an appealing alternative to achieve server consolidation with performance
isolation. Server consolidation however often results in much redundancy in
main memory, because virtual machines tend to use the same kernels, libraries
and applications.

In this paper we present a novel approach to reducing this redundancy by
sharing memory between virtual machines in a virtualized system. The novel
approach is that we use paravirtualized guest operating systems to participate
in page sharing. In particular we depend on these to find virtual mappings
that must be updated in order to share pages. This is less expensive than the
alternative, using shadow page tables to alter virtual mappings in a fashion
that is transparent to the guest operating system. Instead, we use the reverse
mapping feature in Xen’s paravirtualized Linux kernel to efficiently find virtual
mappings for a given page. Furthermore with a paravirtualized operating
system, it is possible to avoid sharing pages that are time critical.

We demonstrate that the approach is feasible by showing that it is able
to share significant amounts memory and that the overheads of using this
approach is smaller than using shadow page tables.

1 Introduction

As virtualization[8, 19, 20, 6] gains popularity, more and more exciting approaches
to utilizing and/or optimizing the underlying virtualized platform, see the light of
day.

While the hardware hosting the virtual system keeps steadily improving scala-
bility, this is insufficient for some uses. Examples include running large amounts of
dormant servers, workloads with high demands for available memory to cache used
files or dynamically instantiating Virtual Machines (VMs) to respond to incoming
traffic, as shown in Potemkin[23].

In order to ensure the scalability of virtualized systems, some bottlenecks must
be overcome. Two typical approaches to this is to reduce the storage needed by
VMs through memory sharing and Copy-on-Write (CoW) file systems.

Memory sharing is feasible because virtualized systems often run homogeneous
VMs, often with the same basic services running. This implies a significant amount
of redundancy in main memory, that can be reduced by use of simple CoW sharing
techniques. To do so three tasks must be performed: 1) finding redundant pages, 2)
sharing pages by updating virtual mappings for the pages containing redundancy

and 3) breaking the page sharing for a given page, if the contents of it is about to
be changed.

The first task is straightforward, one approach is to scan pages and identify
duplicates by their content. This technique is referred to as content-based page
sharing[24, 16]. The second task is more complicated, all page tables that are
mapping a given page must be found and updated efficiently. The semantic gap[5,
12] between the Virtual Machine Monitor (VMM) and VMs however makes this
non-trivial, because most VMMs record little information about the usage of pages
within guest Operating systems (OSes). Quoting David Wheeler: Any problem in
computer science can be solved with another layer of indirection. Not surprisingly,
the traditional approach to overcome the semantic gap is to provide a layer of
indirection between virtual addresses used in VMs and the machine pages they are
mapping, by maintaining shadowed versions of guest OS page tables. In this paper
we contradict this trend by actually avoiding a layer of indirection. Instead, we
take a paravirtualized approach, by altering the guest OS to participate in finding
the virtual mappings for a given page and then letting the VMM update the page
tables. Our claim is that this is possible and can be made more efficiently compared
to using shadowed structures. In the paper, the reverse mapping functionality in
the Linux kernel is used to do this, but the approach should also be viable for other
paravirtualizable OSes. For non-paravirtualizable OSes, the transparent approach
earlier demonstrated[16], can be used as a fall-back solution. The third task, of
breaking sharing, is trivial once task number two is achieved.

This paper focuses on the second and third task, so we only touch upon the first
task. For more detailed information the reader is referred to [13, 14, 16, 15]. To
sum it up, a page scanner is implemented to be invoked from the idle loop of the
VMM, thus only machine cycles that would otherwise be wasted are used for the
scanning. This uses compare-by-hash[9, 10] to efficiently find identical pages, by
hashing the contents of pages and comparing the hash values by inserting them into
a hash table. The process of scanning all intended pages is referred to as a page
scanning round. Once a round is over, the hash table is flushed.

The structure of the paper is as follows: in Section 2 we discuss related work,
in particular different approaches to memory sharing. In Section 3 we present the
design of our paravirtual architecture and discuss which types of pages are feasible
to share. In Section 4 we present an overview of the implementation, in particular
the changes introduced to Xen. We conclude that section with an overview of the
implementation status and explain further optimization. In Section 5 we show that
this approach to memory sharing is feasible. Finally in Section 6 we conclude the
paper and discuss further work.

2 Related Work

There exists several approaches to finding pages eligible for sharing. These can
be divided into two different approaches: 1) passively using prior knowledge or 2)
actively searching for identical contents.

Examples of the first approach include Disco[3] and XenFS[25], which rely on
VMs using the same disk images to known which files are already present in memory.
This means that a given file may be brought into memory once and mapped into
several VMs simultaneously. Another example is Potemkin|[23], which forks new
VMs from an already running instance that is suspended, ensuring that forked
VMs only utilize memory corresponding to the degree of how much they differ from
the original VM.

Examples of the second approach are content-based page sharing in virtualized
systems[24, 17, 16] and Mergemem|[18]. The latter implemented transparent mem-

ory sharing for processes in the Linux kernel.

Content-based block sharing was explored in [22]. This allows VMs to use dis-
tinct disk images, without sacrificing memory sharing. Content-based buffer cache
in [11], is similar to this, but instead of attempting to increase the effective size of
main memory, this is focused on increasing the effective size of buffers.

Updating virtual mappings in order to share pages is, as mentioned, traditionally
(in VMware, Disco, Potemkin etc.) achieved by changing mappings in an extra layer
of indirection. Our approach is more similar to that applied by Mergemem, where
we update the virtual mappings within the guest OS. This is similar to Memory
hotplug project[21], which also needs to update page tables, amongst other things,
in order to remove a range of machine memory addresses.

3 Architecture

The architecture, which we have dubbed the paravirtualized architecture or just
para, is illustrated in Figure 1 on the following page. The purpose of this design is
to make sharing of memory pages possible without the need for shadow page tables.
Instead of relying on the shadow page tables to handle virtual mappings, the VMs
will be aware of the fact that they are sharing pages with other VMs.

We have chosen to split our design into three components to make a design that
is dynamic and easy to implement. The three components are:

Page Hashing (PH) The page hashing component is responsible for hashing mem-
ory pages. The results produced by this component are sets of pages that are
candidates for being shared. For more information about how the hashing
process is conducted and the reasoning behind it, the reader is referred to our
earlier work in [13, cha. 6], [14, p. 65-67] and [16, p. 3].

Copy-on-Write Sharing (CS) This component is placed in each of the VMs that
participate in page sharing. Therefore it is also referred to as the paravirtual-
ized driver. It receives shareable page addresses from a buffer that is shared
by the VM and the VMM. It is gathering information about page table map-
pings for a given page in the VMs when setting up and tearing down shared
pages and returning this to the VMM. At a first glance, it may seem as this
is to rely too much on the VMs. However all new functionality is restricted
to ordinary Xen auditing, so a malicious VM may at most harm itself.

Reference Manager (RM) The reference manager component is located in the
VMM and is the main component of the design. It ensures that the right
components are called in different situations e.g. setting shares up, hashing
pages etc.

It is important to register the original state of pages before they are shared and
track updates to these. This entails saving the number of references to a given
shared page and whether it was writable before sharing it, so it can be restored to
its original state when it is torn down. The reference counts are used by the VMM
to track the usage of memory pages. If it drops to zero, then the VMM will consider
it free, so it is critical to keep this bookkeeping correct.

3.1 Meta-data Dependent Sharing

The paravirtualized design was first designed in [13], and differs from our trans-
parent design[14] in that it introduces changes to the guest OSes. Since it partly
operates from within the guest OS, it has good knowledge about which pages it is

Domain 0 VM1 VM2

)))
0S oS 0S
cS CS
P2M P2M P2M
I I I
] M2P |
PH [|RM

Xen Virtua Machine Monitor

[Hardware]

Figure 1: The paravirtualized design, where most of the functionality is placed
in the Xen VMM. The machine-to-physical (M2P) and physical-to-machine (P2M)
tables are also illustrated.

about to share. This knowledge can be used to make informed choices about which
pages to share. In [15] we examined, what shareable pages was used for inside an
VM for a set of different workloads. It is natural to make use of the results from
this and only share the pages which we deem gives the overall system a performance
gain. Generally put, it is a classic balance between processor cycles and memory
usage, e.g. it might not feasible to setup a group of memory pages that are unshared
momentarily, so only processor cycles are wasted.

The following is a discussion of whether to share different groups of pages. The
grouping of the pages, into a set of categories, largely follows how the Linux OS
views them.

Mapped pages: These are pages which are related to a block device, (e.g. the
hard disk). They are mapped into the virtual address space of one or more
processes. In this category of pages we typically find system libraries etc.
This is in most situations a very attractive part to share and a significant
percentile of the shareable pages on typical workloads. As they are backed
on secondary storage and identical to other pages in the virtualized system,
it seems probable that it is a shareable page that will not be broken down
momentarily. These types of pages should therefore be shared.

Anonymous pages: These pages, as the name implies, are anonymous in that
they are not backed on storage. We only know that they are mapped into the
virtual address spaces of a set of processes. The number of shareable pages in
this category is quite limited on typical workloads. The pages that are found
shareable, should be long term shares because it is unlikely to have founded
duplicates of this kind of pages. They must thus have rather static contents
and should therefore be shared.

Cache only pages: This category of pages are only used by the page cache and
at the moment not in use by any process. It is a very large group of pages on
most workloads and has a high likelihood of being shareable. It is therefore
monumental to share this kind of pages.

Kernel only pages: This category covers the pages only used by the kernel. These
should not be shared for a set of reasons. An overall reason is that the Linux
kernel does not expect page faults to these kinds of pages and the kernel
address space is not designed to be remappable. In [15] we found that this
category primary consist of the following two groups of pages, identified by
a flag on the page descriptor: slab and reserved. Both will be discussed
separately below.

- Reserved pages: About these pages we only know that the kernel uses
them or they are corrupted memory frames!. It seems rather problematic
to shares these pages so they are skipped.

- Slab pages: These pages belongs to the slab object caches[2]. Since these
are likely to be used and are critical to the performance of the OS. For
workloads where the redundancy caused by the slab object caches for
some reason must be reduced, a better solution is to shrink the amount
of pages used for the slab.

Free pages: This category consists of the free pages in the OS. For most workloads
the amount of shareable page in this category is low. We decide not to share
these pages, as we see more clever ways of returning these pages to the VMM
than sharing the few that can be shared. Also these are often depended on to
be quickly allocable, so sharing them are likely to be a performance overhead.
One way is to just balloon the free pages out if the memory pressure within a
VM is sufficiently low.

4 Implementation

Having provided an overview by discussing the architecture of the system, we now
move on to the interesting details in the implementation. First necessary modifi-
cation to the M2P in Xen are explained, followed by an explanation of how shared
pages are set up and torn down. Subsequently issues with shared pages and grant
tables in Xen are discussed. The section is ended with an overview of the imple-
mentation status and a discussion about further optimization.

The globally available Machine-to-Physical (M2P) table and the per VM Physical-
to-Machine (P2M) table, as shown on the figure, gives us an address space called
pseudo-physical [1]. This gives each VM the impression that it has a contiguous
range of memory, as many OSes are not well suited for handling fragmented address
spaces. We use pseudo-Physical Frame Numbers (PFNs) as unique identifiers for
pages in the VMs during sharing as they remain static during the lifetime of a VM.

To realize this design six hypercalls are introduced, as shown in Table 1 on the
next page. The do_get_pfn hypercall falls outside the category of the five others
and it is introduced because we make some fundamental design changes to the M2P
table. The normal M2P table in Xen maps a given Machine Frame Number (MFN)
to one PFN. A mapping from a MFN to all the PFNs that are pointing to it is
needed when pages are shared. This is explained in the following subsection.

4.1 The Machine-to-Physical Table

The M2P table contains mappings from MFNs to PFNs and it consists of an array
with one-to-one relationships between MFN and PFN. It is, as mentioned, necessary
to find all PFNs given a MFN in order to share pages between VMs. This is however

I This information can be found in /include/linux/page-flags.h in the Linux 2.6.16 kernel
source code.

do_setup_shares Is used to setup shared pages. It performs a se-
quence of validation checks to ensure that isolation
is not broken between the VMs. Afterwards the
page table mappings found by the CoW Sharing
component are updated.

do_cow_break Is used to tear down shares as a result of a VM
trying to write to a write protected shared page.
So a private non-shared copy is created for that
VM and all page table mappings referring to the
shared page are updated (CoW break).

do_is_shared_page Is used to identify a page as shared.

do_remove_gnttab_bit Used to clear a bit in a bitmap introduced to handle
sharing and CoW breaking of pages shared by grant
tables.

do_set_gnttab bit Used to set a bit in the bitmap mentioned in the
previous hypercall.

do_get_pfn Is used to query the M2P table.

Table 1: Hypercalls introduced in order to implement the paravirtualized design.

not possible with the M2P table as provided by Xen. The M2P table entries are
therefore extended with single linked lists as exemplified in Figure 2 on the following
page. This simple extension causes some issues as the M2P table is globally available
and the VMs read its contents for different purposes. They are however not able
to read the linked list extension, as they have not mapped the extension into their
address spaces.

To be able to read the fully extended M2P table, the VMs would have to map
the linked list elements in and out of their address space, once for each element in
the list they what to access. Instead a hypercall (do_get_pfn) is introduced to query
the extended M2P table and altered the guest OS to use it. This is acceptable as
hypercalls are relatively inexpensive compared to mapping the linked lists in and
out, as too much re-mapping may cause Transition Lookaside Buffer (TLB) flushes.

The elements in the linked list consists of a pointer to the next element (32
bit) in the list and a 32 bit word carrying meta-data. The word is encoded with
a VMs unique 12 bit id number (domain_id) in the least significant bits and the
PFN in the 20 most significant bits. Normally the unique id number is 16 bits, so
this encoding will limit Xen to a maximum of 4096 VMs (2'2) at the same time,
which is far more than Xen supports at the moment[23, p. 11]. This limitation is
necessary as the maximum number of PFNs possible under our implementation is
1.048.576 (22°), which corresponds to 4 GB of memory?. Memory is allocated to
hold the list elements from the Xen heap, which is limited to 10 MB on a 32 bit
system. This heap is normally used to contain meta-data about the VMs running
on the system. The Xen allocator is not suited for small frequently allocated and
deallocated memory chunks. We therefore build our own 8 byte mini allocator
(much in the spirit of a normal slab object cache).

The effect of this simple M2P change is that the system cannot handle sharing
of several identical pages within a single VM (also referred to as internal sharing).
If pages are shared internally in the VMs, then one MFN would map to two PFNs
or more and it is not possible to distinguish the two pages when updates to the page
are applied, e.g. when the reference count increases. Internal sharing is therefore
avoided in the VMs, which seems reasonable as the amount of internal sharing is

2We only support 32 bit systems without the Physical Address Extension (PAE), which restricts
the system to a maximum of 4 GB of memory.

VM

(ON)

P2M

Pseudo ([)

[=1 =1]

M2P

{)
. % Physical Memory

Figure 2: The M2P and P2M layout with the single linked list extension to the
M2P table. Here a linked list added to an entry in the M2P table for a shared page.
The page is shared between three VMs (the length of the list) even though only one
VM is shown here.

quite limited.

4.2 Setting Up Shared Pages

When setting up shared pages in the paravirtualized design, there are a number of
steps that have to be taken. The three main steps are: 1) finding and preparing
the shareable pages, 2) using the Linux kernel’s reverse mapping[15, p. 23-28] to
efficiently retrieve mapping information and 3) updating the mappings from the
VMM.

To reduce the trusted code base, it is ensured by the VMM, that updates are
only allowed if the mappings being updated, map a page that is owned by a special
pseudo VM called the share domain® and that they map a page belonging to the
VM requesting the update.

Furthermore to ensure correctness in the virtualized system in step 3, it must
be ensured that the contents of the page has not changed since the page was last
compared. This is due to a race condition between the usage of the page that is to
be shared and actually sharing the page: since an arbitrary amount of time may
have elapsed since the page was placed into the buffer by the reference manager
component and until the VM finds the mappings that needs to be updated, so the
content of a page may have been changed at any point in between these two steps.

Figure 3 on the next page shows the process of setting up a shared page. The
steps are described in the following:

1. Finding and preparing: This step consists of finding pages that are can-
didates for being shared. The main work is performed by the page hashing

3This domain is also referred to as the clone domain and is used as a container for all the shared
pages.

VM2

2 o 05 |iia os
‘ ___________
3, 3.
i U AU AR |
P2M : P2M :
"""""""""" SEENNEA [S S NNNE B R
N \ 53
=i @ 1 1) i
5 Pseudo ® Pseudo 33
= o s R | i
c o
3 | |
3 M2P
S (1 1)
g |- : : " Physical Memory
—
Event R >
Hypercall ----4 >
Pointers ------- >

Figure 3: The process of setting up a shared page. The pink page (middle one in
physical memory) is shared between the two VMs. The pointers show how M2P
and P2M tables are related to each other.

component. When two shareable pages have been found, they are passed
along to the reference manager component, which allocates a new page (the
page to be the shared page) and copies the content of one of the old pages
to the new page. After the copy, the reference manager component sends an
event, with the addresses of the old and new page, notifying the VM that a
page is ready for sharing and it should find all mappings that have the old
page mapped. In fact the mappings is not sent immediately with an event
but is batched in a buffer until a certain threshold is reached or a scan round
is completed. We have chosen to batch the updates to not overload the VMs
with virtual interrupts. Furthermore consider the case where an event is sent
each time a shareable page is found. This would require a switch between
the VMM and each of the VMs one at the time, which would introduce a
considerable overhead as the current page table has to be changed for each
VM participating in the sharing of a given page. This also forces a flush of
the TLB.

Pages that changes their contents relatively fast will be invalid for sharing
while in the buffer. If they had been shared, they would have triggered a
CoW break immediately after setup, which would have been undesirable and
the sharing would have been wasted.

2. Getting mapping information: Events are handled as virtual interrupts
by VMs and are therefore handled by an interrupt handler (top half). The
interrupt handler schedules the pending work to a work queue for later pro-
cessing, when not in interrupt context (bottom half). When the work from
the queue is being processed, the reverse mapping functionality in the Linux

kernel is used to find the mappings that need to be updated. These mappings
are then sent synchronously back to Xen via the do_setup_share hypercall for
updating.

3. Update the mappings: When do_setup_shares is called, it first goes through
a set of safety checks to verify that the updating requests are legal, which
includes a page comparison. Afterwards the page table mappings are updated
and all new mappings are set to read-only. So if a VM tries to write to a share
page, a page fault will be triggered.

Next the number of references to the old page is saved, so the page can be
restored with the same number of references if a CoW break should occur.
The number of references from the old page is then transfered to the new
shared page and the old page is freed to the Xen domain heap.

Then the M2P table is updated by either adding a new element to an existing
linked list or a new linked list is created. In Figure 3 on the preceding page it
is shown that the middle page (the pink one) is a shared page between the two
VMs and that the M2P table is extended with a linked list with one element
for each VM. Furthermore the figure shows how the P2M tables are mapping
PFNs back to MFNs.

Finally the last step is to start tracking every reference taken and given to
the shared page at VM level. This means that the amount of references taken
by each single VM must be tracked, such that the number of references can
be set correctly for a given page in the VMs in the case of a CoW break.
Then control is passed back to the VM, which updates the P2M mapping
and the page is now shared. Fortunately Xen handles this easily with a few
modifications.

4.3 Tearing Down Shared Pages

When pages have been shared between VMs, it is likely that some of them will be
written to at some point in time. When this happens, a CoW-break is triggered
and a private non-shared copy must be created, i.e. all original state about the page
must be restored. The process of doing a CoW break consists of four steps in our
design: 1) detecting that the page fault is in fact to a shared page, 2) using reverse
mapping to find all the page table entries that needs to be updated, 3) update the
mappings in the page table from the VMM, 4) continue along the normal page fault
path in the VM.

Figure 4(a) on the next page shows a single VM with a shared page and a non-
shared page. As it can be seen on the figure the shared page is in a M2P extended
linked list. Figure 4(b) shows the same setup just after a CoW break has been
performed on the shared page.

1. Detecting the page fault: The first step is to detect that a given page
fault is a write fault to a shared read-only page. When the fault has been
identified as belonging to a shared page, the virtual address is read from
Control Register 2 (CR2) and converted into a MFN by walking the current
page table. Subsequently, the MFN is stored in the meta-data of the virtual
processor. Each VM on the system has a virtual processor that stores the
state of the physical processor when the VM is not running on the processor.
The page fault is then propagated to the VM that caused the fault.

2. Finding the mappings: When the fault is propagated to the VM, it activates
the standard Linux do_page_fault routine. This is modified to check if a MFN
has been set in the virtual processors meta-data. If so, then the reverse

VM

S S
............... > 0S Page fault -------»
- — — — — — — Hypercall ----»
Pointers ------- =
P2M
NEE— i
- — ?
g S ——T
5 g
E o Y
I I — |
3 M
S (L i)
é Physical Memory
—
(a) State before a CoW break on a shared page.
VM
S S
_______ > 0S Return -
Pointers ~ ------- =
P2M
e ERRERE
= —
£ Gefld Psuiclo
E >:1
g 1 TIT] |
S M2pP
O O
E % Physical Memory
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(b) State after a CoW break on a shared page.

Figure 4: The process of doing a CoW break illustrated as a before (4(a)) and after
(4(b)) state.

10

mapping functionality is used and all the mappings, that need to be updated,
are found. They are then passed back to the VMM with the do_cow_break
hypercall.

3. Updating the mappings: As with the setup of shared pages, a range of
safety checks are performed to ensure isolation and correctness. A new page
is allocated and the contents of the old shared page is copied into the new
page. Next all mappings are updated with the same read-write permissions
as before the page was shared and the number of references to the page are
restored.

Next M2P mapping needs to be updated and because it is during a CoW
break it is known that the page is in a linked list. This means that the
element belonging to the page is simply removed from the list or the list is
completely removed. The MFN of the new page is then used to create a new
M2P mapping with the PFN of the original page.

4. Page fault: The control is then returned to the VM, which updates the P2M
mapping and continue down the normal page fault path of the Linux kernel.
This is necessary as the CoW break could potentially be a side effect of a real
page fault i.e. a write fault to a page that was read-only before it was shared.
This is in fact highly probably as the Linux OS shares pages during forking
of new processes and when allocating memory with the malloc function the
pages allocated are pointed to the zero page until written to. Therefore the
page fault could easily be a side effect of a VMs internal CoW breaks, so the
page fault should still be handled by the OS after the original state of the
page is restored.

4.4 Grant Table Issues

Grant tables[4, 7] is a general mechanism in Xen, which is used to share or transfer
machine frames between VMs. They are used during such operations as disk access
and network send and receive, where the privileged VM (domain 0) uses grant tables
to swap I/O with non-privileged VMs. Grant tables can also be used without the
involvement of a privileged VM.

Grant tables has two modes in which they can operate: 1) sharing mode where
one VM share a frame with another VM and 2) transfer mode where one VM
transfer ownership of a frame to another VM. The first mode is used by the I/O
back-end driver in Xen to transfer data read from or written to disk by the non-
privileged VMs. This is done by sharing frames between the privileged VM (P) and
a non-privileged VM (4) in the following way:

1. VM A creates a grant reference and sends it to VM P by the use of an virtual
interrupt. This grant reference may grant both read and write access.

2. VM P then uses the grant reference to map the frame into its address space.

VM P performs the memory access it needs.

- W

VM P unmaps the frame.

5. VM A removes the grant reference and thereby ends the sharing of the frame
with VM p.

The latter mode in which a frames ownership is transfer to another VM is used

by the network front-end and back-end drivers to send and receive packets. The
transfer is performed as shown below:

11

Related to Location | Modified code | New code | Total
Setup of shares | Linux 6 901 907
Setup of shares | VMM 2 683 685
CoW break Linux 25 443 486
CoW break VMM 11 235 246
Page tracking VMM 78 125 203
Page scanning | VMM 0 1250 1250
Ref. manager VMM 0 820 820
Grant tables Linux 24 17 41
Total number of lines 4638

Table 2: The amount of code either modified or added to Xen to make content-based
page sharing possible without shadow page tables.

1. VM A creates an accept grant reference and sends it to VM P.
2. VM P uses the reference to hand over one of its frames to VM A.

3. VM A then accepts the transfer and thereby changes the ownership of the
frame and clears the reference used.

An unprivileged VM may grant write permissions on a CoW shared page to
another VM using grant tables. Thus an unprivileged VM may alter the contents of
a shared page without triggering a CoW-fault. A simple solution to this problem is
to detect when a shared page is part of a granted reference and force a CoW break
on the shared page before it is granted.

4.5 Implementation Status

The implementation in its current state consists of changes in both the kernel run-
ning inside the VMs and in the VMM. Table 2 gives a rough overview on the number
of lines of code that was needed to make paravirtualized content-based page sharing
possible. The code in its current state is stable enough to perform experiments with
proof of concept in mind, but it is not production ready and further stabilizing is
needed. In the remainder of this subsection, a set of isolation breaching issues are
described. All of these should be trivial to implement.

We have an implementation issue with the allocation of pages to the pseudo
domain (share domain). As it is implemented at the moment, pages are allocated
in the references manager and a reference is taken to the newly allocated page, so
it cannot be freed and a bit is set in a bitmap indicating that the page is allocated
as a shared page. This bitmap is used later on, after the current scan round has
been completed, to release the reference taken during the allocation. This is done to
ensure that the page is freed again if it was not setup as a shared page. There can be
many reasons for why it was not setup as shared e.g. filtered out as part of a grant
reference or the contents of the page had changed. This creates the following issue:
If a large amount of pages are identified as shareable, but for whatever reasons are
not set up as shared, then the domain heap may be depleted and cause the VMM
to crash. Newly allocated pages are only freed as a consequences of pages being
freed during setup or when the pages, that have failed to be setup by the guest OS,
are freed once a scanning round is completed.

This problem could be solved by delaying the allocation of the new page until
the do_setup_shares hypercall is called. A workaround for this memory problem is
to only allocate pages for shares that are known to succeed in being set up. There is
however a twist about allocating the page during the setup hypercall. Somehow the

12

other VMs that participate in a given sharing has to be informed about the newly
allocate pages address and insure that only one new page is allocated per shared
page. This may be solved by using a bitmap and a data structure to indicate which
pages that have be allocated to which shared page. Another solution could be
to apply a policy that restricts the amount of uncompleted shares to be setup at
any given time and thereby control the amount of allocated unshared pages. This
restrictive limit could be adaptive to the number of free pages on the Xen domain
heap.

Another issue is that any VM may read the M2P table and thereby find out
which pages that are shared pages and map these into their address space, as the
table is globally available. This is possible as the validation checks allow all updates
to pages owned by the share domain. This could be corrected by inserting an extra
check in the audit code that only gives references to pages by checking that the
VM, trying to map in the page, is actual part of the sharing. This could be done by
reading the extended M2P table that reflects which VMs and PFNs in these VMs
are allowed to be used.

The implementation has one more issue, which has the consequence that a VM
can re-map a shared page as writable and thereby change the content of the shared
page without triggering a CoW fault. This leads to an isolation problem, which
could be used to attack another VM by altering system critical information. This
should be handled by extending the auditing code to the hypercalls used when
changing mappings.

4.6 Further Optimization

In the following, when CoW is written, it refers to the kind introduced in content-
based page sharing and when copy-on-write is written, it refers to the normal kind
used in a the standard Linux OS.

An optimization, that should improve the performance of the paravirtualized
implementation, will now be explained. Consider the following example: A set
of processes share a page in a normal OS copy-on-write fashion. The normal OS
operation on such a page, if one of the processes tries to write to it, is that a
page fault is triggered. The page fault then copies the content to a new page and
the page table of the process is updated to point to the new private copy with
write permission. After this, the process continues from where the page fault was
triggered. Pages involved in this internal OS copy-on-write sharing, are likely to be
shared with pages in other VMs, since they contain data which is shareable inside
a single OS so it is also likely that they are shareable between VMs.

In the following it will be shown how a page fault is handled on a page, that is
CoW shared (between VMs) and copy-on-write shared internally in a OS. We use
Figure 5 on the next page to illustrate the example.

The following will occur in the current implementation: when a page fault on a
CoW shared page is triggered inside a given VM, the sharing of the page is broken
in all cases, meaning a private copy is created for that VM. In the example, this
results in a break of the CoW shared page and the VM gets a private copy (step
(a) to (c) in Figure 5). The private copy still has a set of processes using it in
a copy-on-write fashion, which means that the page is mapped read-only by the
processes. The result is that the faulting process, the one that triggered the page
fault, gets its own private copy of the VM’s private copy of the page, due to the
normal copy-on-write procedure inside the OS (step (d)). The VM’s private read-
only copy of the page will then be found in the next scanning round and is set
up to be replaced with the shared copy again (step (e)). This happens each time
an internal copy-on-write page fault happens on such a copy-on-write CoW shared
page. Hence there is a short term private copy of a CoW shared page.

13

VM1 VM2 VM1 VM2

(a) A CoW shared page. (b) A copy-on-write fault trig-
gered on a CoW shared page.

VM1 VM2 VM1 VM2

(¢) A new private copy (P) is cre- (d) Process gets a private copy after
ated after a CoW break on S by a copy-on-write fault inside the OS.
VM2.

VM1 VM2

up as shared again.

Figure 5: Typical sequence of actions when a VM writes to a CoW shared page.
Steps (a) through (e) will happen without any optimization. With the optimization
only steps (a) and (e) are needed.

14

The preceding situation can be optimized when it is known that it is an internal
copy-on-write page fault, the page count of the CoW shared page is just decremented
and it is left to the guest OS to handle the rest. This yields the same result as in
the double fault described above. In Figure 5 this corresponds to going directly
from step (a) to (e).

In the case where there is only one mapping for the internal copy-on-write shared
page left inside a given VM, then the OS will try to convert it to a writable mapping.
This can however not be allowed, since the page is CoW shared. To handled it, the
CoW sharing is broken for the VM and it is given a writable mapping of the page,
just like it is done without the optimization.

This optimization should remove unnecessary CoW breaks on pages, that are
set up as CoW shared pages again momentarily after the break.

5 Results

We evaluate the effectiveness of the implementation by comparing it to our transpar-
ent implementation. This entails three experiments: 1) ensuring proof of concept,
in that the implementation is able to share significant amounts of pages, 2) that it
is actually faster than the transparent implementation and 3) finally we examine
the overheads in the transparent designs use of shadow page tables and see how the
paravirtualized version performs in the same conditions.

The machine used to conduct the experiments was a 2.6 GHz Intel Pentium
4 Northwood without hyperthreading and 2 GB of memory. Each VM had an
allocation of 128 MB of memory. Domain-0 had a memory allocation of 1 GB and
the remaining memory was left free. The VMs were running Debian Linux, with a
minimum of services executing, e.g. cron and sshd.

The first set of experiments consists of compiling the 2.6.16 Linux kernel in
the following manner. First 4 VMs were started and allowed to finish their boot
sequence. Then the kernel source code was unpacked inside the VMs, thus filling
their page caches. Then page sharing was activated and as much memory as possible
was shared e.g. mostly the page cache. This ensures that there will be a significant
amount of CoW breaks once the VMs start executing a workload. Finally the
unpacked kernels were compiled in each of the VMs at the same time.

Figure 6 on the following page shows the amount of pages that are shared at
different times during the experiment. The number of shared pages are pulled from
the system every minute. The differences in the amount of shared pages between
the two implementations are likely due to the fact that the paravirtualized design
do not share the kernel only pages and the free pages categories, as explained in
Section 3.1. After the kernels has been unpacked 2-4 minutes into the experiment,
the sharing percentage raises to about 68% and 83%. It then steadily drops to
20% and 30% as the kernels are compiled and the memory pressure is increased in
the VMs. The sharing percentage rises to 60% and 80% after the kernel compiles
has completed, which is mostly due to the files used for the compilation and the
resulting kernel binaries in the page cache, as well as the fact that the system is
mostly idle, which yields more time for scanning for shareable pages. If the reader
is interested in more details about what actually is shared, the reader is referred to
our earlier work in [15]. The figure clearly demonstrates that the paravirtualized
approach is feasible and that it is capable of sharing pages.

To see the actual performance differences between the two approaches, a set of
performance benchmarks are run where the first one consists of timing the kernel
compilation process. The setup is the same as under the sharing experiment above.
The results of this experiment can be found in Table 3 on the next page. The table
shows that there is no performance loss during page sharing in the paravirtualized

15

90

T
Paravirtualized
Shadow Page Tables — —

==

% VM Memory

Time (Minutes)

Figure 6: Sharing results from a kernel compilation (4 VMs).

No Sharing | Sharing
Para 2010.81 2006.46
Shadow 2018.53 2050.65

Table 3: Timing of the kernel compilation process with and without sharing for
both implementations of content-based pages sharing. Lower scores are better.

design compared to paravirtualization without sharing. To the contrary there are
indications of a small performance enhancement with sharing. This may be due to
improved memory locality, which may increase cache hit rates as observed in [24,
p. 187] and [17]. This experiment shows that there is a significant performance
different between using the paravirtualized and the shadow page table approach.
The shadow page table approach has in fact a 2.20% overhead with sharing and a
0.99% overhead without sharing. This preliminary performance experiment shows
good indications that the paravirtualized approach has better performance than the
shadow approach.

Secondly the Aim9 benchmark suite is run to see the performance under cir-
cumstances that stress shadow page tables. Table 4 on the following page shows
two of the memory related benchmarks. These simply run a loop that either forks
processes or executes another script. The reader should be aware that the num-
bers presented, in this experiment, is the mean of three runs taking 60 seconds
each per test. Overall the results shows that there is an overhead in using shadow
page tables. The exec and fork tests, executes a large amount of new processes
and thereby creates new shadow page tables, when used in the transparent design.
These experiments also show that the effect of sharing pages do not have much, if
any, impact on the performance of the operations shown here. This applies to both
implementations.

The only time critical part of both designs is the CoW breaking of shared pages,
since it primarily takes place in the page fault context. To benchmark this exact
situation we created an experiment where that following steps are carried out: 1)
first a set of 3 VMs are started, 2) a Linux kernel is unpacked in each VM, to fill
the page cache and thereby share roughly 26900 pages (105 MB) with shadow page

16

Mode Test Mean | Std. Dev.
Para, no sharing
exec_test 408.66 0.94
fork_test | 1586.66 12.28
Para, with sharing
exec_test 407.00 0.81
fork_test | 1579.00 14.14
Shadow, no sharing
exec_test 351.00 2.82
fork_test | 1200.00 34.41
Shadow, with sharing
exec_test 347.66 1.69
fork_test | 1151.33 39.50

Table 4: Memory related performance counts from the large UNIX benchmark suite
Aim9 version 9.1.10. The results are based on three runs. Higher scores are better.

Mode Mean | Std. Dev.
Para, no sharing 1.56 1.34
Para, with sharing 1.56 1.07
Shadow, no sharing 1.11 0.99
Shadow, with sharing | 5.78 0.42

Table 5: The measurements are the mean time it takes to allocate 24832 pages (97
MB) of memory and write to them under different conditions. Each measurement
is based on 9 datasets. Again lower scores are better.

table and roughly 22300 (87 MB) in the paravirtualized implementation, 3) then
24832 pages (97 MB) are allocated and written to, which forces the VM to perform
approximately 22400 CoW breaks on shared pages (87 MB). This last step is timed
and is used as the result of the experiment.

The results of the experiment are shown in Table 5. It shows that there are no
significant overheads in the allocation of pages and writing to these, with or without
sharing enabled in the paravirtualized design. This means that there are no visible
overheads in performing CoW breaks in that design. Contrary to this, there is a
significant overhead of the CoW breaks in the transparent design. In fact it takes
five times as long to allocated and write to the same amount of pages with sharing
as without, as it can be seen in the table.

6 Conclusion

In this paper we presented a novel approach to memory sharing in virtualized sys-
tems. It distinguishes itself from earlier approaches in that it bridges the semantic
gap between the virtual machine monitor and virtual machines, by relying on the
virtual machines to use the reverse mapping feature in the Linux kernel in order
to effectively find virtual mappings for a given page. This conveniently also allows
us to avoid pages that might not be feasible to share, e.g. free pages and pages
that are used as slab caches. This is a trade-off between sharing as much memory
as possible and the processor cycles spent on breaking and setting up sharing. For
most workloads it should be feasible to share only pages that have relatively static
contents.

We showed that shadow page tables are expensive and that our approach with
paravirtualized operating systems leverages a more efficient solution in terms of

17

performance. For non-paravirtualizable operating systems, we also provide an ap-
proach that is transparent to guest operating systems.

The cost of using this approach is the time spent on altering a guest operating
system to participating in the sharing. As we however have developed a reasonable
interface for this, the cost of building the necessary functionality for other operating
systems should be low.

6.1 Future Work

First of all, the paravirtualized driver needs further stabilizing work, which includes
implementing support for live migration, shutting down virtual machines etc. It
should be trivial to port the shadow specific parts of the code to support hardware
virtual machines (HVMs) and Xen’s new shadow implementation, as well as making
the paravirtualizing driver work seamlessly with these. It could be worthwhile to
examine the limits of our modified M2P table, to determine whether it is possible
and feasible to share pages internally within a single virtual machines. Alternatively
internal sharing could be handled by a Mergemem approach, where the operating
system eliminates duplicate pages by itself. Finally it could be investigated whether
it is possible to minimize the number of hypercalls needed to setup and tear down
sharing.

In the broader sense, it would be worthwhile to investigate which other paravir-
tualizable operating systems are capable of efficiently finding all virtual mappings
for a given page. Furthermore operating systems supporting hotplug memory could
be used to increase the memory allocation for a given virtual machine, depending
on how much it has already shared.

It could prove interesting to extend Xen to support a more adaptive memory
allocation for virtual machines. If using paravirtualized drivers, these could easily
be extended to use operating system functionality to swap out pages that are in-
frequently used or balloon pages out if the memory pressure within the operating
system is low. Virtual machines could, before swapping out any pages, hash the
contents of the pages to see if the page is shareable.

References

[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. In Proceedings of the ACM Symposium on Operating Systems
Principles, October 2003.

[2] Jeff Bonwick. The slab allocator: An object-caching kernel memory allocator.
In USENIX Summer, pages 87-98, 1994.

[3] Edouard Bugnion, Scott Devine, and Mendel Rosenblum. Disco: running com-
modity operating systems on scalable multiprocessors. pages 143-156, 1997.
ISBN 0-89791-916-5.

[4] Vineet Chadha, Ramesh Illikkal, Ravi Iyer, Jaideep Moses, Donald Newell,
and Renato Figueiredo. I/o processing in a virtualized platform: A simulation-
driven approach. In VEE ’07: Proceedings of the 3rd International ACM SIG-
PLAN/SIGOPS Conference on Virtual Ezecution Environments. ACM Press,
2007.

[5] Peter M. Chen and Brian D. Noble. When virtual is better than real. In
HOTOS ’01: Proceedings of the Eighth Workshop on Hot Topics in Operating
Systems, page 133. IEEE Computer Society, Washington, DC, USA, 2001.

18

[6]

[7]

[17]

Simon Crosby and David Brown. The virtualization reality. Queue, 4(10):
34-41, 2007. ISSN 1542-7730.

Keir Fraser, Steven Hand, Rolf Neugebauer, Ian Pratt, Andrew Warfield,
and Mark Williamson. Safe hardware access with the xen virtual machine
monitor. Technical report, 2004. http://www.cl.cam.ac.uk/netos/papers/
2004-oasis-ngio.pdf.

Robert Philip Goldberg. Survey of virtual machine research. IEEE Computer
Magazine, June 7(6):34-45, 1974.

Val Henson. An analysis of compare-by-hash. In HotOS, pages 13-18, 2003.

Val Henson and Richard Henderson. Guidelines for using compare-by-hash.
http://infohost.nmt.edu/~val/review/hash2.pdf.

Charles B. Morrey III and Dirk Grunwald. Content-based block caching. In
23rd IEEE, 14th NASA Goddard Conference on Mass Storage Systems and
Technologies (MSST2006), May 2006.

Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Geiger: Monitoring the buffer cache in a virtual machine environment. In Ar-
chitectural Support for Programming Languages and Operating Systems (ASP-
LOS XII), October 2006.

Jacob Faber Kloster, Jesper Kristensen, and Arne Mejlholm. Efficient memory
sharing in the xen virtual machine monitor. http://www.cs.aau.dk/library/
cgi-bin/detail.cgi?id=1136884892, January 2006.

Jacob Faber Kloster, Jesper Kristensen, and Arne Mejlholm. On the feasibility
of memory sharing: Content-based page sharing in the xen virtual machine
monitor. Master’s thesis, Department of Computer Science, Aalborg Univer-
sity, June 2006. http://www.cs.aau.dk/library/cgi-bin/detail.cgi?id=
1150283144.

Jacob Faber Kloster, Jesper Kristensen, and Arne Mejlholm. Determining the
use of interdomain shareable pages using kernel introspection. http://www.
cs.aau.dk/library/cgi-bin/detail.cgi?id=1168938436, January 2007.

Jacob Faber Kloster, Jesper Kristensen, and Arne Mejlholm. On the feasibility
of memory sharing in virtualized systems: Content-based page sharing in the
xen virtual machine monitor. http://services.cs.aau.dk/public/tools/
library/details.php?id=1180896308, Febuary 2007.

Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Go6tz. Unmodified
device driver reuse and improved system dependability via virtual machines.
In Proceedings of the 6th Symposium on Operating Systems Design and Imple-
mentation, December 2004.

Philipp Richter and Philipp Reisner. Mergemem. http://mergemen.ist.org/.

Mendel Rosenblum. The reincarnation of virtual machines. Queue, 2(5):34-40,
2004.

Mendel Rosenblum and Tal Garfinkel. Virtual machine monitors: Current
technology and future trends. Computer, 38(5):39-47, 2005.

Joel Schopp, Keir Fraser, and Martine J. Silbermann. Resizing memory with
balloons and hotplug. In Proceedings of the 2006 Ottawa Linux Symposium,
July 2006.

19

http://www.cl.cam.ac.uk/netos/papers/2004-oasis-ngio.pdf
http://www.cl.cam.ac.uk/netos/papers/2004-oasis-ngio.pdf
http://infohost.nmt.edu/~val/review/hash2.pdf
http://www.cs.aau.dk/library/cgi-bin/detail.cgi?id=1136884892
http://www.cs.aau.dk/library/cgi-bin/detail.cgi?id=1136884892
http://www.cs.aau.dk/library/cgi-bin/detail.cgi?id=1150283144
http://www.cs.aau.dk/library/cgi-bin/detail.cgi?id=1150283144
http://www.cs.aau.dk/library/cgi-bin/detail.cgi?id=1168938436
http://www.cs.aau.dk/library/cgi-bin/detail.cgi?id=1168938436
http://services.cs.aau.dk/public/tools/library/details.php?id=1180896308
http://services.cs.aau.dk/public/tools/library/details.php?id=1180896308
http://mergemem.ist.org/

[22]

[23]

Selvamuthukumar Senthilvelan and Murugappan Senthilvelan. Study
of content-based sharing on the xen virtual machine monitor.
http://www.cs.wisc.edu/~remzi/Classes/736/Spring2005/Projects/
Muru-Selva/cs736-report.pdf.

Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C.
Snoeren, Geoffrey M. Voelker, and Stefan Savage. Scalability, fidelity, and
containment in the potemkin virtual honeyfarm. In Proceedings of the ACM
Symposium on Operating Systems Principles, October 2005.

Carl A. Waldspurger. Memory resource management in vimware esx server.
SIGOPS Oper. Syst. Rev., 36(SI):181-194, 2002.

Mark Williamson. Xen wiki: Xenfs. http://wiki.xensource.com/xenwiki/
XenFS.

20

http://www.cs.wisc.edu/~remzi/Classes/736/Spring2005/Projects/Muru-Selva/cs736-report.pdf
http://www.cs.wisc.edu/~remzi/Classes/736/Spring2005/Projects/Muru-Selva/cs736-report.pdf
http://wiki.xensource.com/xenwiki/XenFS
http://wiki.xensource.com/xenwiki/XenFS

	Introduction
	Related Work
	Architecture
	Meta-data Dependent Sharing

	Implementation
	The Machine-to-Physical Table
	Setting Up Shared Pages
	Tearing Down Shared Pages
	Grant Table Issues
	Implementation Status
	Further Optimization

	Results
	Conclusion
	Future Work

