
On the Feasibility of

Memory Sharing

– Content-Based Page Sharing in the
Xen Virtual Machine Monitor.

Jacob Faber Kloster
Jesper Kristensen
Arne Mejlholm

{jk|cableman|mejlholm}@cs.aau.dk

at

Department of Computer Science,
Aalborg University

June 2006

Department of Computer Science
Aalborg University c

Title:
On the Feasibility of Memory Sharing:
–Content-Based Page Sharing in the
Xen Virtual Machine Monitor

Semester:
Dat6
1. February 2006 -
14. June, 2006

Group:
D615a, 2006

Members:
Jacob Faber Kloster
Jesper Kristensen
Arne Mejlholm

Supervisor:
Gerd Behrmann

Copies: 7

Report – pages: 114

Appendix – pages: 18

Total pages: 132

Synopsis:

This thesis evaluates the feasibility of doing
page sharing between virtual machines. To do
this evaluation we proposed two different de-
signs: One that is transparent to the guest op-
erating system and a paravirtualized one. We
implemented one of these based on Potemkin,
which is a modification of the Xen virtual ma-
chine monitor. In this we find pages eligi-
ble for sharing by use of a technique called
content-based page sharing. When identical
pages are found, the actual sharing of pages is
obtained using shadow page tables and Copy-
on-Write. Finally the implementation was
evaluated and we found no significant over-
heads except for the use of shadow page ta-
bles. The paravirtualized design should miti-
gate this overhead.

As for the feasibility of page sharing, we car-
ried out a series of experiments. These ex-
plored sharing under good and bad conditions
as well as under synthetic workloads. We con-
cluded that page sharing is feasible and that
most workloads that have similar kernels and
applications have something to share.

Keywords: VM, VMM, hypervisor, Xen,
Potemkin, VMware ESX Server, virtual-
ization, paravirtualization, memory sharing,
overcommitment, flash cloning, content-based
page sharing, compare-by-hash, SFH, Copy-
on-Write, CoW, shadow page tables, balloon-
ing, reverse mapping, zero pages, benchmarks.

Preface

This thesis continues our work from the last semester[33] and contains all new con-
tents, except where it is explicitly stated else. We would like to thank Jacob Gorm
Hansen and the Xen team, in particular Keir A. Fraser, for answering our questions
regarding Xen. A great thanks goes to Michael Vrable for providing us with the
Potemkin source code and answering our questions; this has been an invaluable in-
spiration for our implementation effort. Finally we would like to thank Josva Kleist
and Gerd Behrmann for providing us with access to the experimental cluster, so we
had sufficient machines to implement and evaluate on.

The reader should be aware that we make use of three different ways of doing
citations. 1) If a citation is placed directly after a word, then the citation refers to
the word. 2) If the citation is at the end of a line, but before the period sign, then
the citation refers to the whole line. 3) Finally if the citation is at the end of a
paragraph behind the period sign, then the citation refers to the whole paragraph.

It should be noted that we make extensive use of abbreviations (often just the
ones used by Xen). By our own experience we know that this can be confusing, so
we provide a glossary list with abbreviations in Appendix A on page 115.

Jacob Faber Kloster Jesper Kristensen

Arne Mejlholm

3

Contents

Contents 5

1 Introduction 9

2 Motivation and Goal 11
2.1 Virtualization Terminology . 11

2.1.1 Xen . 13
2.2 Motivation . 13
2.3 Initial Experiments . 14

2.3.1 Changes in Memory . 15
2.3.2 Shareable Pages Within a Single OS 16
2.3.3 Interdomain Shareable Pages 16

2.4 Thesis Goal . 17
2.5 Limitations . 18
2.6 Summary . 18

3 Related Work 19
3.1 Compare-By-Hash . 19
3.2 Copy-On-Write . 20
3.3 Interdomain Shared Cache . 21
3.4 Content-Based Page Sharing . 21
3.5 Flash Cloning . 22
3.6 Comparison of the Different Approaches 22
3.7 Summary . 23

4 Essential Memory Management and Virtualization Prerequisites 25
4.1 Reverse Mapping . 26
4.2 Memory Management in Xen . 28
4.3 Handling Page Tables in Xen . 31
4.4 Shadow Page Tables . 31
4.5 Ballooning . 33
4.6 Events and Event Channels . 33
4.7 Summary . 34

5

5 Revised Design 35
5.1 Components . 35
5.2 Architectures . 36

5.2.1 Transparent Design . 36
5.2.2 Paravirtualized Design . 37

5.3 Algorithms . 39
5.3.1 Algorithms in the Paravirtualized Design 39
5.3.2 Algorithms in the Transparent Design 42

5.4 Changes to the Original Design . 43
5.5 Summary . 44

6 Implementation 45
6.1 Implementation Status . 45
6.2 Overall Description . 46
6.3 Super Page Problem . 50
6.4 Sharing Pages . 52
6.5 Handling Page Faults to Shared Pages 56
6.6 Filtering Pages . 62
6.7 Size of the Content Index . 65
6.8 Summary . 67

7 Sharing Evaluation 69
7.1 Benchmarks . 70
7.2 Best Case Experiments . 71

7.2.1 Idle Virtual Machines . 72
7.2.2 Virtual Machines running Kernel Compiles 72

7.3 Feasibility of Sharing Zero Pages . 74
7.4 Impact of using Different Binaries 75
7.5 Worst Case Experiment . 76
7.6 Synthetic Workload Experiments . 77

7.6.1 Virtual Machines running the Medium Workload Generator . 77
7.6.2 Virtual Machines running Mixed Workloads 79

7.7 Overcommitment . 80
7.8 Impact of the Memory Allocation of Virtual Machines 81
7.9 Comparison with Other Approaches 84
7.10 Chapter Conclusion and Summary 86

8 Performance Evaluation 87
8.1 Evaluation using Benchmarks . 87
8.2 Micro Benchmarks . 93

8.2.1 Benchmark of Frequently Used Functions 94
8.2.2 Investigation of the Expensive Operations 96
8.2.3 Further Investigation of the Expensive Operations 99

8.3 Summary . 100

9 Conclusion and Future Work 101
9.1 Future Work . 103

6

Bibliography 105

Appendices 113

A Glossary 115

B AIM Benchmarks 117

C Unabridged Performance Evaluation Results 127

7

Chapter 1

Introduction

The layout of the thesis is as follows: In Chapter 2 we start by introducing the
terminology needed for the thesis. Then we argue that it is feasible to explore
memory sharing between virtual machine. With these arguments we finally state
the goal and limitations of the thesis. In Chapter 3 we analyze related work on
doing memory sharing and compare these with each other.

Having explained what the thesis will examine, we use Chapter 4 to introduce im-
portant memory management and virtualization techniques. These will be referred
to throughout the rest of the thesis. As the necessary techniques have been intro-
duce, we then present our two different designs in Chapter 5. We explain that the
implementation will be using one of the approaches explained in Chapter 3, namely
content-based page sharing. The two designs differ in the approach needed to create
the actual sharing of memory. One is a modification to the operating system run-
ning inside the virtual machine, the other uses a transparent approach to change the
memory mappings without a given virtual machine knowing about it. In Chapter 6
we first explain the implementation from an overall point of view and then elaborate
on selected details.

Having covered the design and implementation, we finally have the means for
evaluating memory sharing. This is done in Chapter 7, where we evaluate the fea-
sibility of sharing memory. This is where things get interesting, as we are able to
experiment with different workloads and see how much memory can be shared. Fi-
nally we compare our results with the results reported by the other memory sharing
approaches that were covered in Chapter 3. After experimenting with the imple-
mentation we, in Chapter 8, evaluate how efficient the implementation is. This is
performed on an overall level and through a series of micro benchmarks.

Finally in Chapter 9 we conclude the thesis and explain how the research can be
continued.

9

Chapter 2

Motivation and Goal

We start this chapter by explaining the terminology and virtualization concepts
needed to outline the goal of the thesis. For a more thorough explanation of the
terms we refer the reader to our original report[33], which contains a comprehensive
summary of much of the virtualization literature.

2.1 Virtualization Terminology

The ability to do virtualization[24],[45] is based on two key concepts: A Virtual
Machine Monitor (VMM) and a number of Virtual Machines (VMs) each running
a guest Operating System (OS). A system comprised of these concepts is referred to
as a Virtual Machine System (VMS).

The VMM controls the hardware interface of the underlying machine and ex-
ports a virtual abstraction of this to the VMs, or the VMM arbitrates access to the
hardware to ensure safety of the VMS to put in another way. The VMs are thus in
effect just a safe software representation of the actual hardware. If the VM represen-
tation of the hardware differs from the actual hardware, then the differences must be
translated at runtime by the VMM, thus creating a performance overhead. On the
other hand, the changes in the VM representation can also lead to a performance
boost, e.g. when changing the semantics of the hlt instruction to yield the VM’s
control of the processor [60]. It is a balancing act finding the right set of changes
to ensure good performance. However as a rule of thumb, it makes sense to keep
the virtual representation as close to the underlying hardware as possible without
sacrificing the safety of the system.

Key features of VMSes are that the VM abstraction ensures good isolation be-
tween different VMs [39]. The very point of the VM abstraction is to ensure that the
VM cannot abuse the real machine, so as long as the VMM is correctly implemented,
then there is per definition isolation between the VMs. Some developers from the
popular open source VMM Xen, even went as far as implying that virtualization
achieved many of the goals of microkernels[37],[51], while retaining the Application
Binary Interfaces (ABIs) of commodity operating systems [27].

Traditionally there have been two different architectures for a VMM. [23] referred
to these as either Type I or Type II VMMs. Figure 2.1 on the next page pictures a
Type I VMM, which interacts directly with the hardware within its own protection

11

domain. A Type II VMM was typically embedded within an existing OS, thus
making it able to take advantage of such things as the OSes device drivers. The
disadvantage to this approach is that the VMM risks being affected by the failure of
the host OS.

OS1

VM1

Virtual Machine Monitor

VM2

OS2 OS3

VM3

Hardware

Figure 2.1: Traditional Virtual Machine Monitor Architecture.

Most processor architectures are not easily virtualized [41],[44],[26] because their
instruction sets include sensitive instructions. The processor distinguishes between a
number of modes of privilege (four on the IA-32), which determine which instructions
can be executed. Within a normal OS running on a IA-32 processor, the kernel runs
in the most privileged mode (ring zero) while applications are run within the least
privileged (ring three). To virtualize the processor, the VMs are not allowed to run
in the most privileged mode as this would enable them to modify any information
and thus sacrifice the safety of the system. Instead the VMs are executed in the
second most privileged mode (ring one on IA-32) and the most privileged mode is
reserved for the VMM. Executing an OS, that normally assumes to be operating
at the most privileged mode in ring one, introduces a number of problems. Some
parts of the OS may rely on using certain instructions, which must be run in the
most privileged mode. Most of these instructions, when executed at a lesser level
of privilege than required, causes a trap. If the set of instructions all do this, then
there is no problem, because a switch to the VMM can be done and the instructions
can be replaced with instructions that are equivalent or the VMM can do the work
on behalf of the VM. Virtualization based on this simple scheme is referred to as full
virtualization. Full virtualization is preferable as it lets OSes run unmodified, but
most processors do not have an instruction set that can fulfill the requirements for
full virtualization. In most processors there are instructions that instead of causing a
trap, fail silently. These operations must be dealt with separately and are referred to
as sensitive instructions. The realization of this problem can be directly attributed
to [41], which discusses the problem in more detail.

The current trend for hardware manufacturers is to support virtualization at
the chip level[55],[3, p. 27-29]. In particular they have eliminated the sensitive

12

instructions that make the IA-32 architecture non-natively virtualizable [36, p. 12].
Thus these are relying on trapping privileged instructions using full virtualization.

VMware [58],[49],[46] uses an approach called binary translation to detect the
sensitive instructions. They parse the binaries at runtime and create a safe represen-
tation to be executed. As this is an expensive operation the representation is cached
to speed up subsequent executions.

2.1.1 Xen

Xen[5],[42],[19] is a Type I VMM, which uses a different approach to virtualization.
This approach is to provide a virtual hardware abstraction to the VMs that is dif-
ferent from the actual machine hardware. Although the approach had been used
before, it was [60] which named it paravirtualization. Instead of handling sensitive
instructions at runtime, the Xen approach is to modify the guest OS to avoid these
instructions, thus avoiding the overheads of evaluating each instruction to replace it
or rely on trapping the sensitive instructions.

Xen uses a terminology that is different from the usual terminology. Commonly
a VM is referred to as a domain and we use the terms interchangeably in the thesis.
Therefore we also refer to concepts related to more than one domain as interdomain,
e.g. interdomain sharing and communication. Although the VMM is fully isolated,
it moves much functionality, such as creating a new domain, into a special privileged
domain (called domain-0 or often just dom0).

The guest OSes running within Xen are executed from a less privileged mode of
execution (ring one instead of the usual ring zero). As ring zero is usually referred
to as running in supervisor mode, Xen has kept this terminology for guest OSes
and applied a new term for the VMM’s mode of operation, namely hypervisor mode.
Therefore the Xen community often refers to Xen as a hypervisor instead of a VMM.

Throughout the thesis we will have to address the operation of switching between
the VMM and the VMs. The VMs communicate with the VMM through hypercalls,
which are clean interfaces exported by the VMM (not unlike system calls within an
ordinary OS). When the VMM needs to communicate with the VMs it primarily
happens through events and upcalls, which in effect are just virtual interrupts for-
warded to a VM. Whenever a switch from the VMM to a VM, or the other way
around, happens we refer to it as a hyper switch. A switch from a VM to another,
is referred to as a world switch. The task of switching between processes within an
OS is, as ordinarily, referred to as a context switch and is only used in this exact
meaning.

2.2 Motivation

Having introduced the necessary terminology, we now address the goal of the thesis.
It goes without saying that practically any resource in a computer, virtual or

real, is in demand. Everything must be cheaper, larger and faster. Memory is no
exception and in a VMS more memory is always applicable. An example of this is
UnixShell#[56], an Internet company that is specialized in offering VMs for rent.
Their smallest offer is a VM with 64 MB of memory, running on a 8 GB physical
machine. This allows as much as 128 machines to run on one server. One of the

13

most prominent applications of their product, is web hosting, where the customer
has entirely free hands to set up the server as he pleases. As a basic service the
company provides a number of minimal Linux distribution configurations, where the
OS is already set up. Now, as the VMs in their data center run from the same
basic configurations and probably some of the same applications, there is a rather
significant probability of redundancy, meaning that they have loaded the same data
into memory.

If the data is identical, then there is no reason not to reduce multiple private
copies into one shared copy. This operation (referred to as reclaiming memory)
will free up some amount of memory, that can then be used for various purposes,
for instance to start additional VMs as well as adjusting the current allocation of
memory to each individual VM1.

This introduces the risk of using more memory than there is available in the
machine, this is called overcommitment of memory. When the shared copies are
altered, a private copy is once again needed. Policies to resolve the situation when
the system is overcommitted and there are no free pages, is of course needed. VMware
resolves to swapping pages to disk from the VMM [58].

Starting the thesis we had some concerns about whether it would be feasible to
share memory. The first concern was if there actually was enough data to share to
make it worthwhile. Also a concern was that if the data identified to be shareable
changed too fast, then the operation of sharing the pages, just to unshare them
soon after would present an overhead. Therefore we carried out a number of initial
experiments to examine whether exploring memory sharing actually is worthwhile.
We note that the experiments were only conducted to motivate us; they should not
be considered representative of general workloads or even be conclusive.

The remainder of this chapter is divided as follows. In Section 2.3 we present
the results of the experiments that we have conducted to investigate if there is
potential for sharing memory between VMs. Specifically there are three sets of
experiments: 1) Changes in memory, 2) shares within a single OS and 3) shares
between VMs. The first experiment addresses the concern of whether the memory in
an OS changes too rapidly to make it worthwhile to share memory. As for the second,
from reading [58], we had a suspicion that even within a single OS there would be
redundant copies of memory. The second experiment addresses this. Finally the
last experiment examines whether there is anything to share between different VMs.
Having presented the results of the experiments, we state the goal of the thesis and
a set of limitations.

2.3 Initial Experiments

The non-idle experiments were performed using SPECweb99[18] to generate a work-
load on the server. SPECweb99 is specifically designed to exercise the web server
with both static as well as dynamic web pages. The machine used during the ex-
periments is a 700 MHz AMD Athlon with 64 MB of memory running Debian 3.1
with Apache 2.0.55. We chose to limit the server to 64 MB as we deemed this to

1This is however not as simple as it sounds. We explain a technique to do this in a simple manner
in Section 4.5 on page 33.

14

be the minimum realistic size of a web server running in a VM. Furthermore the
SPECweb99 benchmark kept a continuous number of 20 connections to the web
server.

2.3.1 Changes in Memory

Our first concern was that the contents of memory changes so rapidly that trying to
share it, is not feasible. To address this concern we analyzed how memory changes
over time on both an idle and a non-idle server.

To ensure that the experiments themselves influenced the memory as little as
possible, we took snapshots of the memory using a forensics tool2 and sent them
over a local area network to a remote machine. The reason for doing this is that we
do not want the snapshots to end up in the page cache3, which could happen if it was
saved to disk. If simply saved to disk, the next snapshot would reflect the previous
snapshot because the memory would contain deferred disk writes that contain parts
of the snapshot. Using this approach we cannot ensure that the page cache is not
used at all, but we can ensure that it is kept to a minimum. To analyze the snapshots
we used a technique called compare-by-hash4.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1 10 100 1000

P
ag

es

Time (min)

Idle server
Non-idle server

(a) Long Run

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 0 100 200 300 400 500 600 700 800 900 1000

P
ag

es

Time (sec)

Pages

(b) Short Run

Figure 2.2: Unchanged pages in memory on both idle and non-idle machines. Figure
2.2(a) shows dumps every five minutes for 20 hours. In Figure 2.2(b) we examine
the first 15 minutes after the benchmark started, on a non-idle machine with dumps
every 30 seconds. Notice that the left graph is in logarithmic scale.

A bit of explanation is in order, as in Figure 2.2(a) we cannot quite tell how
fast the memory is changing within the first minutes. As this is a rather interesting
detail, we provide an equivalent run in Figure 2.2(b). From the figure we can see
that this workload changes roughly 2000 pages per 50 second and that this happens
linearly until it starts to flatten out.

The fact that after half an hour 19% of memory still remains unchanged, even
with a small memory size and a high workload, suggests that the problem about
memory changing too fast described above, not really is a problem to worry about.

2Memdump http://www.porcupine.org/forensics/memdump-1.01.README.
3The page cache is the general page sized disk cache in Linux [38, cha. 15].
4If not familiar with this technique, we explain it in Section 3.1 on page 19.

15

http://www.porcupine.org/forensics/memdump-1.01.README

2.3.2 Shareable Pages Within a Single OS

As explained, we also wanted to see how much memory could be shared inside a
single OS. Again in this experiment we also used compare-by-hash to analyze the
memory. A zero page is a page that is filled with zeros.

 2

 4

 6

 8

 10

 12

 14

 10 100 1000 10000

P
er

ce
nt

Time (min)

Pages
Zero pages

(a) Idle

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 200 400 600 800 1000 1200 1400 1600

P
er

ce
nt

Time (min)

Pages
Zero pages

(b) Non-idle

Figure 2.3: Possible shares within a single OS. The dotted line indicates how larger
a percentage of the possible shares are zero pages.

As can be seen from Figure 2.3, the idle machine steadily uses its zero pages,
while the non-idle has consumed its zero pages almost from the start.

The interesting information in the figures is that there actually is something to
share within a single OS. The idle machine starts out with a large percentage of
shares, but then as time passes the amount of shares steadily drops. As for the non-
idle experiment the number of possible shares is more stable, oscillating between
8-9%. We were surprised that there would be so much to share within a single OS,
so this alone almost gave us the motivation we needed.

2.3.3 Interdomain Shareable Pages

Finally to examine how much memory can be shared between VMs, we carried out
the following experiment. Contrary to the previous experiments, this was carried out
by a modification to Xen5. We have constructed a function within the VMM, which
hashes the contents of pages belonging to VMs and sends a report of the number of
potential shares via a serial line to a remote machine. Contrary to the workloads in
the previous experiments, we reduced the load on the web server in this experiment
to one continuous connection.

The results of the experiment is presented in Figure 2.4 on the next page. As can
be seen a very high percentage of the pages can be reclaimed in the idle experiment,
mainly because of the high percentage of zero pages. As for the non-idle experiment
we get a more realistic percentage of possible shares with very few zero pages. As
can be seen from the figure, about 10% of the memory allocated to the VMs can be

5This is actually just a part of the implementation described later in the thesis. Originally we used
the VMM to suspend a number of VMs causing the contents of any given VM’s memory to be written
to a disk image and then compare the VMs based on the saved images. As the implementation of
the save function at that time did not seemed reliable, we performed the experiments again with
our implementation. The results from both experiment sets do however roughly match each other.

16

 64

 66

 68

 70

 72

 74

 76

 78

 1 10 100 1000

P
er

ce
nt

Complete memory scans

Possible shares
Zero pages

(a) 2 Idle VMs

 0

 10

 20

 30

 40

 50

 60

 70

 1 10 100 1000

P
er

ce
nt

Complete memory scans

Possible shares
Zero pages

(b) 2 Non-idle VMs

 55

 60

 65

 70

 75

 1 10 100

P
er

ce
nt

Complete memory scans

Possible shares
Zero pages

(c) 3 Idle VMs

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 10 100 1000

P
er

ce
nt

Complete memory scans

Possible shares
Zero pages

(d) 3 Non-idle VMs

Figure 2.4: Possible shares between domains over a number of iterations. In the
idle experiments the zero pages account for a very large percentage of the possible
shares. In the non-idle the zero pages are quickly consumed.

shared under a workload. Compared to the result of 8-9% in the last experiment, this
does not seem like much. We remind the reader that the benchmark run during this
experiment only had one connection, so potential shares due to the web server itself
could very well be reduced due to the drop in sheer numbers of running processes.

These three initial experiments have convinced us that there is not only some-
thing to share between VMs, there is even something to share with a single VM.
Furthermore the contents of pages does not seem to change too rapidly to make it
feasible to share pages. Thus we got the motivation we needed to explore memory
sharing.

2.4 Thesis Goal

As the previous sections indicated, there is a potential for sharing memory between
VMs. To fully explore this scenario, we will make an implementation of a memory
sharing scheme and conduct a number of experiments on sharing memory. Formal-
ized the goal of the thesis is to:

Study existing techniques for doing memory sharing between virtual ma-
chines. This should be used to design and implement a solution that has
little performance overhead. Finally the solution should be evaluated and
compared to existing solutions.

17

2.5 Limitations

The basis for the implementation will be Xen version 3.0.2 and we limit it to modi-
fying Xen and the XenLinux kernel. We will try to keep as much of the implemen-
tation architecture independent, but should we face the situation where architecture
dependent code is needed, then we will favor the IA-32 architecture without Physical
Address Extension (PAE) support. We do this primarily because this is what Xen
was primarily developed for and this is the only type of architecture we have access
to during the development.

Furthermore we will not in our design be addressing sharing the contents of
software managed caches as another subproject of Xen is researching this at the
time of writing. We discuss this brifly in Section 3.3 on page 21.

2.6 Summary

This chapter started by explaining general virtualization concepts and gave a quick
introduction to Xen. Having established this, we then argued that examining mem-
ory sharing between virtual machines would be worthwhile. To convince ourselves
and the reader, we carried out a number of initial experiments to investigate if this
was the case. In particular we examined whether memory changes too fast to make
sharing memory unfeasible. We found that this was not the case. Furthermore we
examined whether there would be anything to share, both inside a single virtual
machine and between multiple domains. From the experiments we found that the
workloads we examined had memory to share. With this insight, we convinced our-
selves that making an implementation to experiment with this would be worthwhile.
In the next chapter we will be investigating related work on memory sharing to find
a suitable technique for the implementation.

18

Chapter 3

Related Work

This chapter summarizes previous work done on sharing memory between Virtual
Machines (VMs). We note that this chapter is almost a direct excerpt from the first
thesis and has only been modified lightly.

The chapter is composed as follows, we first introduce necessary concepts, then
we summarize related work and finally we evaluate advantages and disadvantages to
the different approaches. There are two conceptual approaches to sharing memory
between VMs: 1) Use prior knowledge about certain blocks of data being identical
or 2) actively compare the blocks by contents to find identical blocks of data.

3.1 Compare-By-Hash

A technique called compare-by-hash[28],[29] is used to do fast comparisons of blocks
of data. Using this technique, a given set of blocks can be compared efficiently by
producing a hash value of each data block. The hash values are organised in a hash
table and if there are hash values that collide, then there is a good probability that
the two involved data blocks are identical. This is efficient compared to a naive
approach, which would be to compare each block of data with every other block,
thus yielding a complexity of O(n2).

An example of good use of this technology is rsync1, which can be used to syn-
chronize entire file directory structures. However the authors of the articles note
that the technique can perform worse than the naive approach or cause data loss, if
applied incorrectly.

In [29] they list some considerations that could indicate that the use of compare-
by-hash is not correctly applied. One of the most important advises are that the
technique should not be used as the only means to ensure correctness of data. Fur-
thermore as hash functions are discovered to be unsecure at a large scale, the hash
values should only be used temporarily i.e. thrown away after use.

1http://rsync.samba.org/.

19

http://rsync.samba.org/

Child

Parent

VAS

MAS

(a) Sharing

Child

VAS

Parent

MAS

(b) Sharing with update

Figure 3.1: Simplified explaintion of Copy-on-Write. On the left picture both the
parent and child have identical Virtual Address Spaces (VASes) mapping into the
Machine Address Space (MAS). On the right picture an update has been performed
by the child and a new page has been created.

3.2 Copy-On-Write

Copy-on-Write (CoW), first introduced for memory sharing in the TENEX system
in [7], is a lazy optimization technique generally applicable within computer science.
As our focus is on memory, we will explain it from this point of view.

The concept of CoW is to manage duplicate data objects by not creating identical
copies, but instead giving a pointer to a shared data object. Updates to data objects
shared in this manner must be intercepted to make sure that no undesired side-effects
occur. When an update occurs then the reference to the shared copy is discarded
and a new private object is created. Associated with each shared data object is a
reference count, so the object can be removed when it is no longer needed.

The technique is for instance used in the Linux kernel when forking processes as
pictured in Figure 3.1. Each process has a Page Table (PT) that translates from
a virtual address space into a machine address space. Instead of duplicating the
pages of the process, the child process is given a PT where the entries point to pages
allocated to the parent process. The pages are marked read-only, so an update will
trigger a write-fault. The kernel then intercepts the fault and creates a new page
that is not write protected, so that it can be updated by repeating the original write
operation. Further details can be found in [50, p. 239-241], [25, p. 87] and [38, p.
31].

Having discussed sharing of pages within an Operating System (OS) as a basis
for understanding CoW, we now move beyond a single OS and consider how sharing
of memory is done between VMs. Thus from now on, when we discuss sharing pages,
unless explicitly said otherwise, we are referring to interdomain shared pages.

20

3.3 Interdomain Shared Cache

The Disco system[10] introduced the concept of transparent page sharing. It provided
a level of abstraction over physical memory and was able to share pages by identifying
identical pages. It did this by intercepting all access from VMs to block devices and
use this to maintain an interdomain shared cache. Thus it was able to share the
data from all accesses to a shared devices.

This idea is used in an ongoing research project by Mark Williamson called
XenFS[61],[62], which also aims to provide an interdomain shared cache for Xen.
The approach is to modify the OS to use a front-end driver to request that a page
be brought into memory by a back-end driver. When a different VM request an
identical page it is given a reference to the page already in the cache. Currently, as
far as we can tell, identical pages are identified solely by the file handle. Whether a
content based approach is being considered remains unknown to us.

Finally a content based approach to block devices has been explored. The first
[48], was a student project that used hashing to search for identical pages by analyz-
ing all pages brought into memory. Unfortunately they were not able to finish the
project and thus no results on sharing were provided.

3.4 Content-Based Page Sharing

VMware introduced2 content-based page sharing in [58]. The concept is based on
the compare-by-hash technique as described in Section 3.1 on page 19.

Contrary to Disco’s approach, which uses prior knowledge to identify identical
data, this approach is based on a service that compares pages in memory at runtime.
The comparison is done by using a hash function to index the contents of every page.
If the hash value of a page is found more than once, then there is a good probability
that the current page is identical with the page that gave the same hash value.
VMware ESX server uses a 64 bit hash function[32] to index the pages. To be
certain that the pages are identical, the pages are compared bit by bit. If identical
pages are found, then the pages are reduced to one page using CoW sharing.

Returning to the concerns raised in [29], as the authors also noticed, content-
based page sharing is one of the good applications of compare-by-hash. If hash
collisions occur without the pages being identical, then the pages are just not con-
sidered for page sharing, thus removing the concern for collisions. As the pages are
compared bitwise, we do not rely on the hash values for correctness of the system.
Furthermore as hash values are thrown away after use, then the correctness of the
system is not coupled to one certain hash function.

The content-based page sharing principle was also implemented as a patch for
the Linux kernel in mergemem[43] demonstrating that there are duplicate pages to
eliminate within a single OS. Quoting [40], a security issue was discovered in the
sharing scenario:

A hostile process tries to guess the content of a confidential page by cre-
ating a set of arbitrary pages containing some guesses. An authorized

2Although the author does not directly take credit for the technique in the article, another article
by VMware researchers [46] claim that it was VMware that introduced content-based page sharing.

21

process merges one of those pages with the confidential page. The sharing
of the two pages is not directly visible to the hostile process. But modi-
fying a shared page takes much longer, because it causes a copy-on-write
page fault. [40]

The same problem applies to sharing memory between different VMs. Depending
on the implementation of the sharing scheme3, the OS can construct arbitrary pages,
wait a sufficient amount of time and write to the page. Exploiting the vulnerability
does, however, become more tedious than with the mergemem scheme, as in an OS
the attacker is able to tell which processes are running and then direct the attack. In
the Virtual Machine System (VMS) scheme this becomes much harder and attacks
will have to be launched in the blind.

Therefore we deem that this vulnerability is nothing but a theoretical annotation
with no or little practical use. However users should be aware of this vulnerability
if they are running a system where security is a concern.

3.5 Flash Cloning

Another approach was taken by Potemkin[57], a Xen based framework, which is
able to launch a large number of VMs by introducing new functionality termed flash
cloning and delta virtualization. It uses prior knowledge about pages being identical,
but in a different manner than the approaches previously explained.

The concept is, briefly described, to launch one instance of a VM and let it run
until it reaches a given state. At this point every memory page in the VM is marked
read-only effectively creating a VM in a frozen state, where any modification of a
page will trigger a write-fault. At some point the VM is cloned using CoW and
another VM that is identical to the original VM is created. The advantage to this
approach is that the second VM will not take up much memory until its memory is
modified.

In order to implement the scheme a special VM is introduced to keep track of
page ownership and how many VMs are sharing a given page.

Using the scheme described, they report impressive results wherein they started
a 128 MB referential image and 116 clones of this image. All of the running clones
consumed a total of 98 MB, implying that each VM changed less than one MB of
its memory.

3.6 Comparison of the Different Approaches

Now we discuss advantages and disadvantages of the content-based page sharing and
the flash cloning approaches.

As both approaches make use of CoW they both potentially have a performance
overhead. When faults are triggered due to attempted write operations to read-only
pages, there are additional operations that are not present when not using CoW.
New operations include a trap to the Virtual Machine Monitor (VMM), finding new

3Write faults to shared pages may be more or less transparent to the OS.

22

space to write in, as well as actually writing the new page. Therefore as updat-
ing pages is more expensive than in a non-sharing setup, the number of writes to
read-only pages should ideally be minimized. If this is achieved, then the potential
performance overhead may be turned into a performance boost, as pages without
changing contents should improve locality in caches etc.

The inherent problems with the content-based page sharing approach is that it
introduces a new overhead: Finding candidate pages for sharing. Some scheme for
scheduling the task must be devised. Content-based page sharing can identify all
potentially shareable pages by contents, thus it can achieve as high or higher share
percentage than flash cloning4.

While the flash cloning approach has demonstrated great memory sharing num-
bers, it should be noted that Potemkin runs an environment that is almost perfect
for sharing memory. While their setup is optimal for their needs, it is less applicable
to the general user. Especially if the user needs to migrate VMs or run different
operating systems. Furthermore we expect memory sharing to decrease proportional
to the running time of the VM using flash cloning, as we saw in Section 2.3.1 on
page 15.

A drawback of both approaches is that they both require Shadow Page Tables
(SPTs) to be easily implemented. We explain SPTs in some detail in Section 4.4
on page 31. SPTs are notoriously known to be expensive in workloads with many
processes being started [5, p. 2].

3.7 Summary

In this chapter we examined related work done on memory sharing. In particular we
examined three approaches that used prior knowledge to identify duplicate pages.
These were: Flash cloning in the Potemkin framework and two interdomain shared
cache, one in Disco and one called XenFS. There were two other approaches which
used an approach that actively searches for identical pages: Content-based pages
sharing in VMware and a student project that examines pages brought into memory
by block devices.

The next chapter will examine specific virtualization techniques and concepts
that would be useful for the implementation.

4Given that there is no significant nondeterminism involved in booting a VM.

23

Chapter 4

Essential Memory Management
and Virtualization Prerequisites

This chapter introduces memory management concepts central to our design and
implementation. As consistent terminology about the different constituents of Page
Tables (PTs) is non-existent, we will adopt the terminology used in [25]. In the
discussions that follow we assume that we are working with the IA-32 architecture.

The first level table is called the Page Global Directory (PGD) and the second
level table is called a Page Table Entry (PTE) table. Using this naming scheme a
PT refers to the whole structure, consisting of a PGD and a number of PTEs.

Xen adopts a different naming scheme for these tables. It uses a notion of ln
tables. On IA-32 without Physical Address Extension (PAE) enabled n is equal to
two, thus providing l2 and l1 tables. A l2 table should just be thought of as a PGD
and the l1 a PTE table. We found this terminology to be a bit confusing, so we do
not adopt it.

The following explanation makes use of the Linux kernel’s Memory Area (VMA)
notion. A VMA is used to describe a contiguous memory area within a given address
space. In order to keep this as efficient as possible, the kernel tries to merge VMAs
to reduce the space used to describe regions. [38, p. 255-266],[9, 599-606]

The layout of the chapter is as follows: In Section 4.1 we discuss a recent addition
to the Linux kernel that facilitates easy reverse look-up from a given page to the
VMAs that are using it. In Section 4.2 and 4.3 we discuss how Xen adapts memory
management to ensure safety. In Section 4.4 we give an introduction to Shadow Page
Tables (SPTs) and how they are implemented in Xen. In Section 4.5 we describe a
technique that allows the Virtual Machine Monitor (VMM) to remove pages from a
Virtual Machine (VM) in a simple manner. Finally in Section 4.6 we describe Xen’s
primitives for doing interdomain and VMM to VM communication.

Before starting, we note that there is no documentation of the SPTs in Xen
available, so all our descriptions are based on the implementation, which currently
spans 6.000 lines of complex and poorly documented code just for the shadow32.c and
shadow.h files. Therefore the descriptions reflect the way we interpret the code. As
for the stability of the code, a member of the Xen development team at Cambridge
recently said that the current implementation have, to put it nicely, serious flaws
[21].

25

4.1 Reverse Mapping

This section is based on [9, p. 680-689], [25, p. 48-50], [13], [14], [16] and [15] as well
as the kernel source code in include/linux/mm.h, mm/rmap.c and include/linux/rmap.h

of the Linux kernel version 2.6.16.
From time to time the kernel needs to relocate the contents of page frames, e.g.

when swapping a page out to disk. Moving the contents of a page frame from one
place to another would, in a naive implementation (the 2.4 kernel actually did this
when all else failed), require examining all virtual addresses spaces, i.e. every virtual
address in every process, to see if it points to the given page frame. In order to be
able to swap more efficiently, the kernel needed a mapping from physical addresses
to virtual addresses. As a solution the 2.5 series of the Linux kernel introduced
a reverse mapping (rmap) mechanism that associated a list of PTE pointers for
each page struct1. With this mechanism, all that is needed to find all the virtual
addresses that point to a given page is to read the list of PTE pointers of the given
page struct.

The rmap solution was however deemed to be too costly in terms of memory
usage and processor cycles spent on maintenance of the data structure. Therefore
an effort was initiated to come up with a more efficient solution. The proposed
solutions are referred to as object-based reverse mapping. Instead of associating
a list of PTE pointers to pages, another approach is taken. The reasoning is as
follows: As the number of pages often is larger than the number of kernel objects
(think VMAs) describing the pages, it should be more economic to use these as the
links between page frames and virtual addresses. To illustrate the point, remember
that a large data file is represented by a single VMA region in the kernel, but spans
many pages.

The kernel distinguishes between two types of pages: Inode mapped pages and
anonymous pages. A page is inode mapped when it is backed on secondary storage
and/or has an entry in the kernels page cache. If this is not the case, the page is
referred to as anonymous.

To understand the implementation of reverse mapping, the first observation is
that inode mapped pages already contain the needed information, we just have to
retrieve it. The lookup hierachy used to locate PTEs for a given page is pictured in
Figure 4.1 on the next page.

Each page struct contains a mapping member that is a pointer to an address space

struct. This again has a member prio tree root i mmap (a sort of radix tree well
suited for describing intervals) that contains pointers to all the vm area structs that
point to the given page. This struct gives the start and end addresses of the area,
so we have to search this area for virtual addresses that point to the given Machine
Frame Number (MFN). There is however a twist: The page is a memory mapped file
and the page struct has an associated index member, which identifies which block
of the file the page is containing. This can be used to index directly into the VMA,
so we can reduce the need to search the entire area to a single lookup.

Unfortunately this only applies to inode mapped pages and anonymous pages
1There is such a struct for each page frame and it was actually a more compact data structure

than described. It is however conceptually just a list of pointers and to us the details are not
essential.

26

struct address space {
...
struct prio tree root i mmap;
...

};

struct page {
...
address space* mapping;
...
pgoff t index;
...

};

...

...

struct vm area struct {

unsigned long vm start;
unsigned long vm end;

};

Figure 4.1: Using reverse mapping to resolve the PTEs that are referencing an inode
mapped page.

cannot use this lookup scheme. Two different patch sets were devised to remedy
this: anon-vma and anonmm.

The first associates a data structure to each page, which gives pointers to the
VMAs that are using this page. The latter gives pointers to mm structs from each
page. Both solutions were included in the kernel and benchmarked. Looking at
the source code of the 2.6.16 Linux kernel reveals that the anon-vma patch set was
finally chosen. As we make use of the first solution, we will disregard the second and
explain the first in the following.

As said before, the anon-vma solution associates a data structure with each
page struct (pointed to by the mapping member), namely an anon vma struct. This
essentially is comprised of a lock and a list of related VMAs. This is a rather loose
definition and this is done deliberately, as the kernel applies lazy techniques when
updating this list. This implies that it may link to VMAs that no more reference
the page searched for. Thus the only guarantee we get, is that the VMA once has
referenced the page. The VMAs are searched much like the inode mapped case,
except there is no way to skip searching the entire VMA. The operation is more
expensive, but conceptually it is more simple than the inode mapped case. The
lookup hierachy is pictured in Figure 4.2 on the following page.

Furthermore only searching through related VMAs is less costly than running
through every process in the system. Finally it should be worth pointing out that
using reverse mapping may end up affecting system performance: Extra processor

27

spinlock t lock;
struct list head head;

};

struct anon vma {

...

...

struct vm area struct {

unsigned long vm start;
unsigned long vm end;

};

struct page {
...
address space* mapping;
...

};

Figure 4.2: Using reverse mapping to resolve the PTEs that are referencing an
anonymous page.

cycles spent maintaining the reverse mapping is one way, another is if the VMs
are pressured to do a lot of swapping and the reverse mapping keeps the swap
performance penalty low.

4.2 Memory Management in Xen

In order to fully virtualize any given Operating System (OS) in a safe and efficient
way a number of modifications are required. We describe some of the most significant
changes in the following three sections.

Flushing the Translation Look-aside Buffer (TLB) is expensive, because with an
empty TLB the system will have to translate every virtual address on demand until
the TLB again is filled with a sufficient amount of entries from the working set.
Thus flushing the TLB is expensive and should be avoided in order to maximize
throughput on the processor. [8, p. 2]

The Linux kernel divides every process address space into two parts, the user
space that is different for each process and the kernel space that is common for each
address space. Typically the virtual address space is divided so that the first 3 GB
part is the user space part and the last GB of the address space is kernel space. [25,
p. 53-54]

By doing this the kernel avoids TLB flushes whenever a switch to kernel space is
performed, because the pages needed are accessible on any PT. Xen adopts the same
strategy: It creates a Xen specific area in the upper 64 MB of the virtual address
space of every process [5, p. 3]. The layout of any virtual address space belonging

28

to a guest domain in Xen is as pictured in Figure 4.3.

User Space

0x00000000

Kernel Space

Xen
0xFC000000

0xFFFFFFFF

0xC0000000

Figure 4.3: Xen mapped into a virtual address space.

Xen needs a fine grained control over memory allocation to ensure isolation be-
tween the VMs and therefore all memory allocations are performed at a page level
granularity. The VMM keeps track of the ownership and use of each page by asso-
ciating a page info struct with each page. To us the most important parts of this
struct are: Page type, owner, type count and reference count. [53]

Page Type: A page can have one of eight mutually-exclusive types. The first (none)
indicates no special use of the page. Then there are four PT types l1 to l4,
which are used for different levels of PTs. There are also two types intended
for segmentation: Local Descriptor Table (LDT) and Global Descriptor Table
(GDT). The last of the eight types is used to indicate that a page is writable
(RW), meaning that the guest OS can use it for whatever purposes. The
VMM (and not the hardware) regards it as being writable. That is for the
paravirtualized case; in shadow mode (as we will explain in Section 4.4 on
page 31) the page types change meanings. l1 to l4 have shadowed versions.
There are two new types that replace GDT and LDT: hl2 and snapshot. A
snapshot page is an internal part of the SPTs, which is used when synchronizing
the SPTs. The hl2 table is an optimization that minimizes the need to map
pages in from the guest OSes.

Finally the writable page type has changed semantics. In paravirtualized mode,
we knew that the page was used as a writable page. In shadow mode we predict

29

that the page is writable, but it may very well contain one of the OSes PTs.

Owner: The id of the domain that owns the page.

Type Count: This count is used to keep track of how many places the page is used
with the page type. The page cannot change type as long as the count is not
zero. In shadow mode2 it counts how many SPTs have been pointed to the
page since the last SPT flush.

Reference Count: Is used to keep track of the number of references to the page.
This typically reflects any PT that currently has it mapped in and should be
thought of as how many processes have access to it. A page may not be freed
as long as the count is larger than zero.

In Linux the memory is normally allocated in contiguous blocks of machine mem-
ory, but because the VMM allocates at a page level granularity it cannot be guaran-
teed that it is a contiguous block. This can be a problem because most OSes do not
handle fragmented memory well[5, p. 7]. To overcome this problem Xen has intro-
duced a pseudo-physical memory mapping, often referred to as physical memory. We
will adapt this terminology; physical memory is a per guest VM abstraction of ma-
chine addresses. Using this the paravirtualized OS can create a contiguous range of
memory, which may actually be allocated in any given order in machine memory. To
make this possible the VMM contains a globally readable machine-to-physical table
which contains the mappings from machine addresses to physical addresses. Fur-
thermore each guest VM has a physical-to-machine table with the reverse mapping.
[53]

Throughout the rest of this thesis we will use the terminology in Table 4.1.
The PT mapping, which is placed in the guest OS, performs a translation from
a virtual-to-machine address. The next two mappings, Machine-to-Physical (M2P)
and Physical-to-Machine (P2M), are the ones mentioned before. The last translation,
Shadow Page Tables (SPT), is also a mapping from virtual to machine addresses.
We will explain SPTs in more detail in Section 4.4 on the next page.

Mapping Maps address
PT Virtual to Machine
M2P Machine to Physical
P2M Physical to Machine
SPT Virtual to Machine

Table 4.1: Memory Translation Mappings.

Finally Xen uses a number of abbreviations for page frame numbers. A Machine
Frame Number (MFN) designates a real machine page frame. A Physical Frame
Number (PFN) refers to a pseudo-physical frame number (an entry in the P2M)3.
Finally both Guest specific Machine Frame Number (GMFN) and Guest specific

2More specifically in ref count mode. This is described in Section 4.4 on the next page.
3We choose to view it this way, in the code however it is “a catch-all for any kind of frame

number“[6].

30

Physical Frame Number (GPFN) are used interchangeably depending on the context.
In translated shadow mode the latter three are equivalent. [6]

4.3 Handling Page Tables in Xen

The most significant features of Xen’s memory management, is the management of
PTs for ensuring isolation in the Virtual Machine System (VMS). This section is
based on [53]. With ordinary PTs the guest OS has direct read access to the PTs,
while updates of the PTs must be validated by the VMM [5]. When a guest VM
creates a new process it is expected to allocate and initialize its own PTs from inside
its address space and register it with the VMM. When it is registered with the VMM,
there are two possible ways to make updates to the PTs: Hypercall and writable
page tables.

Hypercall: When a process in a guest OS wants to update one of its PTs it makes
a hypercall (mmu update), which transfers the control of the processor to the
hypervisor. The hypervisor then checks that the update does not violate the
isolation of the guest VM and the VMS as a whole. If it does not violate any
constrains, it is allowed to complete the write operation and update the PT.

Writable Page Tables: This method gives the guest OS the illusion that their
PTs are directly writable. The VMM traps all writes to memory pages of the
l1 type (PTE). If a write operation occurs, then the VMM will allow writes
to that page, but at the same time disconnects it from the currently active
PT. In this way the guest OS can safely make updates to the page, because
the updated entries cannot be used by the Memory Management Unit (MMU)
until the VMM validates the page and re-connects it to the PT. The VMM re-
connects the page when: 1) The TLB is flushed, 2) a page in the unconnected
PTE is accessed or 3) the guest OS modifies another PTE entry in a separate
PTE.

The PTs are only handled this way when the guest OS requests it through a
vm assist hypercall. It should be noted that writable PTs do not yield full
virtualization of the MMU. The memory management code in the guest OS
still needs to be aware of Xen, but porting new OSes to Xen should however
be easier using this scheme.

4.4 Shadow Page Tables

Full virtualization needs a way to ensure the correctness of updates to PTs. This
is necessary because write operations to writable pages are non-trapping operations
on x86 and a malicious VM can thus alter its PTs as it pleases. To remedy this, a
common trick is to provide a shadow version of every PT to the MMU instead of the
OSes own PT. The VMM detects changes in the OSes normal PT and propagates
these to the Shadow Page Tables (SPTs). By doing this the VMM can ensure that
the VMs cannot access machine frames they are not allowed to access. [46, p. 4-5].

31

VM1

VM2

VM3 SPT

V2P
P2M

VAS

VAS

VAS

MAS
P2M

P2M

P2M

Figure 4.4: The level of indirection obtained by using SPTs in Xen. Leftmost we
have the current Virtual Address Space (VAS) of each VM in the system. Each of
these consists of “physical” addresses that must be translated by use of the P2M table
to find the corresponding machine address in the Machine Address Space (MAS).
The bold arrow from a virtual address to a machine address indicates a SPT entry.

The main principle behind SPTs is to provide a level of indirection between
virtual addresses and machine addresses as pictured in Figure 4.4, thus giving a
two level paging lookup. An unmodified OS cannot use this two level lookup, so a
hardware specific representation of the two mappings is produced.

At the start of the thesis last semester the Xen SPTs were only used inside VMs
to enable them to do live migration [12]. In the mean time the SPT implementation
in Xen, necessitated by the need for hardware virtualization support[55], has evolved
to support four different states: 1) Disabled, 2) enabled (our guess is that this is
the one used for migration, where a read-only SPT is generated from the existing
PT in the OS), 3) translated mode, which is transparent to the guest OS and 4)
external, used for full virtualization using hardware virtualization chips. The choice
of shadow mode is selected when starting a VM at runtime through the configuration
file. Furthermore we note that the SPT implementation is architecture dependent,
so different versions exist.

A P2M table which is organized as a two level PT, is used in both translated and
external mode to achieve the extra level of indirection. The hardware specific SPT
maps any virtual address onto a machine address as dictated by the P2M translation
table. A SPT refers to this hardware specific representation while we will refer to
the P2M as the translation table. One way to regard the SPTs is that they essentially
just are a cache of the OSes PTs and the P2M tables, so as such it can be discarded
at any time [57, p. 8].

32

In Xen a special mode that can be enabled is ref count mode. If enabled it
simply reuses the type info for a given page to keep count of how many SPTs are
referencing the page.

Without any optimizations a SPT should be produced every time a world or
context switch occurs. As this is a quite large computational overhead, a SPT cache
can be used to allow reuse of SPTs. This again raises the concern of spending too
much memory storing old SPTs and the task of determining when the SPTs are no
longer valid. Xen stores one SPT for every PT, but reserves the right to tear down
SPTs if running low on memory. Xen usually defers updates to the SPTs, so that
they are done on demand. Sometimes it is however necessary to fully synchronize
the SPTs with the OSes PTs.

Using this abstraction it becomes possible for the VMM to relocate a page owned
by a given VM if needed, without the VM knowing about it.

4.5 Ballooning

If the VMM for some reason needs to allocate new pages and it has run out of free
pages, then one place to turn to is to take pages from a guest OS. When the VMM
needs to reclaim memory pages from a guest OS it is put in an awkward position,
because it has no knowledge about the usage of pages in the guest OS. It will have to
make uninformed choices when selecting pages to reclaim and it would be expensive
if the VMM should keep track of or try to guess, which pages in the guest OS could
be reclaimed.

The guest OS on the other hand has knowledge about its own working set and
memory pressure, so the best way to reclaim pages, is to make the guest OS give
the VMM the amount of pages it requests. A technique for doing this, is called
ballooning and was introduced in [58].

Ballooning is used to change the memory pressure in the guest OS and force the
OS to invoke its native memory management algorithms. The technique is realized
by using a driver, the balloon driver, to change the memory pressure inside the guest.
When the VMM wants to reclaim memory from the guest, it simply tells the driver
to allocate pages, conceptually inflating the balloon, and return the allocated pages
to the VMM. When the pages are no longer needed by the VMM it can return them
to the guest OS simply by deflating the balloon and thereby lowering the memory
pressure.

The balloon driver allocates free pages from the guest OS and inserts them on a
linked list to keep track of which pages have been reclaimed by the VMM.

4.6 Events and Event Channels

The section is based on [5] and [53].
Normally an OS communicates with the hardware through interrupts. One of

the challenges of virtualization is to intercept interrupts and direct them to the
correct VMs. Xen’s solution to this is to convert the interrupts into events and
then propagate these to the VMs instead of the interrupts. The events are passed
asynchronously to the VMs through event channels.

33

Each VM has two bitmaps: Event pending and event masked. Together these
two are referred to as an event channel. The VMM can set a bit in the bitmap to
indicate that a particular event is pending. When this has been done the VMM
does an upcall to a given VM, thus scheduling the VM. The VM then checks which
events are pending and interprets them as interrupts. If the VM needs to mask out
interrupts it sets a bit in the event mask bitmap.

Using events of course requires changes to the OS, to enable it to run using events
instead of real interrupts. The event channels should as such be viewed as a means
of one-directional communication from the VMM to the VM. To communicate the
other way, the VMM exports a hypercall interface to the VMs.

The actual implementation of events in Xen is a bit more fine grained than
described above. In fact there are four different kinds of events:

• pirq: Used to deliver hardware interrupts to a VM.

• virq: Used to deliver virtual interrupts to a VM.

• ipi: Used to deliver interrupts from one virtual processor to all other proces-
sors.

• interdomain: Used to allow interdomain communication.

4.7 Summary

In this chapter we described the techniques necessary to realize and understand our
implementation. We first examined reverse mapping, a new feature in the Linux
kernel that enables the kernel to do more efficient swapping. It uses a trade-off
between memory usage versus processor cycles spent on examining memory areas to
find virtual addresses that are referencing a given page.

Then we examined the implementation of memory management in Xen. In par-
ticular the most significant parts needed to virtualize an operating system and the
associated bookkeeping data structures. We saw that every page has associated a
type, type and reference count as well as a pointer to the domain owning it. Then
we explained that these were different when using shadow page tables. Shadow page
tables enables the virtual machine monitor to provide a level of indirection between
virtual and machine addresses in a manner that is transparent to the guest operating
system.

Then we described a simple technique that enables the virtual machine monitor
to increase and decrease the memory pressure inside a given guest operating system
by using a module that allocates and frees pages. This is called ballooning.

Finally we explained how Xen performs virtual machine monitor to virtual ma-
chine communication, namely by sending events. These are essentially just software
representations of real interrupts. For virtual machine to virtual machine monitor
communication the virtual machines can use a hypercall interface exported by the
virtual machine monitor.

With these techniques in mind, we can move on to actually proposing a number
of designs for the implementation.

34

Chapter 5

Revised Design

The first part of this chapter sums up the designs from the last semester, though with
some alterations. The layout of the chapter is as follows: First we introduce how the
designs are split into separate components, which constitutes the basic functionality
needed to implement a memory sharing scheme. We choose to use the content-based
page sharing approach for the implementation as the flash cloning approach (both
discussed in Chapter 3 on page 19) has already been implemented. Furthermore by
choosing the content-based page sharing approach we will, at least to some extent,
be able to repeat and evaluate the results of VMware.

Having described the components, we then explain the architectures of the two
designs. We explain how the two differ from each other and what their advantages
and disadvantages are compared to each other.

After that we describe the algorithms needed to create and tear down sharing in
both designs. Finally we describe how the designs differ from last semesters report
[33].

5.1 Components

The designs are split into components to clearly separate unrelated concepts. They
are as follows:

Page Hashing (PH): This component creates a hash value of each memory page
accessible from the components location. As the component was chosen only
to run in the Virtual Machine Monitor (VMM) itself, this opts for two different
approaches: Scan the pages of each domain or every machine page frame1.

Hash Indexing (HI): Maintains a hash table with open addressing[34, p. 525-
541],[17, p. 237-244] based on the hash values generated by the PH component.
We will refer to the hash table as the content index. The entries in the content
index contains: 1) A hash value that reflects the content of a given page and
2) the machine address of that page.

1Furthermore we have planned “scrambled” versions of both of these. These should reduce slight
tendencies towards starvation.

35

Copy-on-Write Sharing (CS): This component handles write faults to shared
pages and shares pages using Copy-on-Write (CoW). Two implementations of
this are required: One using Shadow Page Tables (SPTs) and one running as
a module inside the guest OS.

Reference Manager (RM): The RM keeps track of the reference count for a
shared page and signals the tearing down of shared pages based on this refer-
ence count.

Page Comparison (PC): Compares two memory pages to see if they are bitwise
identical.

The HI component is a subcomponent of the PH component and the PC com-
ponent is a part of the RM component.

5.2 Architectures

The following subsections will outline our different designs. To convey the ideas
effectively we try to keep the descriptions on as high a level as possible and return
to the details in Section 5.3 on page 39. This means that most optimizations are left
out in the descriptions.

Originally we proposed three designs in our DAT5 report[33]. Two of these are
deemed usable: The first design, like VMware’s design, is completely transparent to
the guest Operating System (OS), while the second requires some modifications to
the OS. As we are targeting Xen for the implementation, applying modifications to
the OS does not seem unreasonable.

As explained in Section 4.4 on page 31, Xen distinguished between shadow modes
on a domain basis as dictated by the configuration of the domain. Because of this we
are able to choose the appropriate code for the given design at runtime. For the sake
of explaining the design, we however distinguish between the two in the following
descriptions.

5.2.1 Transparent Design

In this design all the components are, as pictured in Figure 5.1 on the facing page,
placed in the VMM. To achieve this transparent solution, we use Shadow Page Tables
(SPTs) as introduced in Section 4.4 on page 31.

The Physical-to-Machine (P2M) table can be used to share memory pages between
Virtual Machines (VMs) without them knowing about it. This is done by changing
the translation in the P2M tables, so that one or more P2M entries point to the same
machine address. The CS component in the VMM will carry out this task as well as
propagating the changes from the P2M tables to the SPTs.

The PH component has direct access to the entire machine address space because
of its hypervisor privilege. This makes the PH component capable of hashing the
memory pages for the entire system, as opposed to if it was placed in the individual
VMs, which are only able to access the pages belonging to them. Furthermore placing
the PH component in the guest VMs would require us to trust the values calculated
by the module. As we generally cannot trust a VM to be friendly, the trust is hard

36

PH RM
CS

P2M P2M

CS CS

P2M P2M

CS

GuestOS

(XenLinux)

GuestOS

(XenLinux)

GuestOS

(XenLinux)

Xen Virtual Machine Monitor

GuestOS

(XenLinux)

Hardware

VM1 VM2 VM3Domain-0

Figure 5.1: The architecture of the transparent design.

to achieve and typically comes at the expense of performance [22]. Furthermore
placing the PH component in the guest VM could possibly introduce a new Denial-
of-Service attack, where the guest VMs are sending arbitrary hashes to the VMM,
thus overloading the VMM and disrupting the service of the other VMs. A third
option would have been to place the PH component in domain-0, which would have
the advantage that we keep the VMM simple.

While it is possible to enable a VM to be able to access the memory of the other
VMs, we expect that it is expensive to do this. The expense paid is primarily that
a hyperswitch is needed to map each page into the domains virtual address space.
The latter argument also applies to placing the RM component in domain-0.

The advantages to the transparent design are that it can be done completely
transparent to the VMs, hence no modifications to the guest OS. The disadvantage
is that most of the complexity is placed in the VMM, which is contrary to the goal
of keeping the VMM as simple as possible. Additionally the P2M tables and SPTs
introduce both a memory usage overhead and a performance overhead in keeping
the tables updated.

5.2.2 Paravirtualized Design

The design is as illustrated in Figure 5.2 on the following page and is essentially
just a modification of the transparent design, where all the components, except for
the CS component, are placed in the VMM. Placing the CS component in the VMs
will allow us to avoid the overheads of using P2M tables and SPTs at the price of
additional complexity. We explain the complexities in some detail in this section,
but most will not be apparent until we discuss the algorithms in the next section.

The actual sharing is handled by the CS component in the VMs. The reason
why we are able to trust the CS component in this case is that we are able to use the
functionality in Xen that validates updates to the Page Tables (PTs), thus making us
able to ensure that the CS component actually updates the PTs to valid addresses.

37

PH RM

CS CS CS CS

GuestOS

(XenLinux)

GuestOS

(XenLinux)

Hardware

GuestOS

(XenLinux)

GuestOS

(XenLinux)

VM1 VM2 VM3Domain-0

Xen Virtual Machine Monitor

Figure 5.2: The architecture of the paravirtualized design.

To be able to realize the sharing of pages in the CS component, we need to be
able to find all references to a given page and change them. This task resembles the
task of swapping a page to disk, so we might as well take advantage of the reverse
mapping solution, as described in Section 4.1 on page 26.

To actually reclaim pages in this design we use ballooning as described in Sec-
tion 4.5 on page 33. One thing is freeing shared pages within an OS, another thing
is reclaiming the pages and turning them over to the VMM. The balloon interface
does not allow us to reclaim a given page directly, but we can free the page from
inside the guest OS and balloon an arbitrary free page out. It is not necessarily the
same page that is reclaimed by the balloon driver, but this does not really matter
to us. In fact we might not even be interested in ballooning the pages out, as there
might be better use for the freed page inside the OS.

In order to let a VM handle write faults to shared pages, the VMM needs to: 1)
Trap the write faults, 2) detect they were caused by write operations to a shared page
and 3) notify the VM of this. This kind of communication is normally done through
events (as described in Section 4.6 on page 33), therefore we need to introduce new
events in this design. Events are also used to signal the CS component in the VM
that shares are pending. It should be noted that the event mechanism does not
provide for data exchange, it only signals that an event has occurred. Therefore a
buffer is needed, so that the VMM can exchange data with the VM.

A secondary page comparison is needed in this design, because from the point
where we identified two identical pages until the PTs are updated, the pages may
very well have changed. This could be done as a part of the VMM’s PT validation.
If the pages have changed, then a rollback to the old addresses is needed.

Finally it should be noted that the theoretically possible attack we described in
Section 3.4 on page 21, becomes more feasible in this design. The main reason being
that we inform the VM of exactly where shares are located in memory.

It should be noted that we expect the paravirtualized design to be the most
efficient solution, because the transparent design has the SPT overheads. The para-
virtualized design is thus the preferred approach, but for OSes other than Linux and

38

full virtualization we fall back to using SPTs.

5.3 Algorithms

Having introduced the architectures, we will now describe the details of the designs.
To realize our designs we need two algorithms: One to share pages and one to
remove the sharing of pages. We start by presenting the paravirtualized design as
this contains the most interesting details.

5.3.1 Algorithms in the Paravirtualized Design

VM 1 VM 2

2,3,8

5 5

446 1

VMM

1

7

6

CSCS

RMVirtual MMU PH

Hypercall

Processing

Events

Data-flow

Figure 5.3: Algorithm of how sharing is created in the paravirtualized design.

We will now give a stepwise description of how the sharing of pages is carried
out. This is illustrated in in Figure 5.3, where the numbers corresponds to the steps
of the algorithm.

1. Hashing and Content Index Lookup: The PH component hashes a page
and inserts the hash value into the content index through the HI component.
When the hash value is inserted there can be two different outcomes: 1) The
hash value has not been seen before and is added to the content index or 2)
the hash value has been seen before and we have a sharing opportunity.

2. Page Comparison: If the pages are actually identical, then send an event
to the involved VMs that they have to share the page. This can be done
asynchronously as long as the VMs are not run between the point of sending
the event and setting up the share. If they are not identical then we have a
hash collision or one of the pages has changed since hashing it.

3. Page Allocation: A new page is allocated and the contents of one of the
pages to be shared is copied into the new page frame.

4. Share Pending Notification: An event with two machine addresses is sent
to the VM, indicating which machine address to remove and which to insert in
its place.

39

5. Page Table Update: The VMs that should share the pages update their PTs
to point to the same page and mark it as read-only in the PT entries.

6. Commitment: The updates to the PTs are validated as always by the VMM.
As the pages may have changed since step 2, we need to ensure that the pages
are still identical. Therefore we do a page comparison.

7. Reference Count Update: The RM updates the reference count for the
shared page. In order to ensure the correctness of the system, it needs to
validate all changes to PTs. They must either point to 1) the VMs own address
space or 2) a shared page.

8. VMs Relinquish Pages: The two pages that were to be shared are now
obsolete and the VMs therefore free and possibly balloon out the pages.

There is a subtle, but crucial detail to this algorithm. In order to avoid intro-
ducing new vulnerabilities, we employ a preemptive strategy. In order to share two
pages, 1) we allocate a new page, 2) copy the contents of one of the pages to be
shared to the new page, 3) point the two mappings to the new page and 4) free the
two old pages. Why this is necessary is perhaps best explained through one of the
problems avoided by the algorithm.

As a thought experiment, consider the following scenario: To share two pages we
select one of the pages to be the one to be reclaimed, R, and the other to become
CoW-shared, S (see Figure 5.4(a) on the facing page).

As it can be seen in Figure 5.4(b) page S, which is owned by domain DX , gets
shared between DX and DY . We update both PTs to reflect this. After a while
domain DX attempts to write to the shared page, thus triggering a CoW page fault.
A private copy of the page is created and the PT is updated as in Figure 5.4(c).
The private page needs to be allocated from somewhere. Let us for simplicity say
that the page is allocated from within the OS. If the DY domain (the non-owning
domain) is malicious, it may hold onto the page forever. This situation forces domain
DX to use two pages instead of one for the data. If this happens at a large scale,
then domain DX may very well end up being crippled because most of its pages are
shared to other domains and it is not in possession of enough free pages to keep all
of its working set in memory. Alternatively it could allocate the page from Xen’s
domain heap2. This however has the drawback that a malicious domain may end up
claiming all the free pages and we are not confident that Xen will be able to resolve
such a situation.

By leaving the concerns of page allocation and ownership of shared pages up to
the VMM, we get a simple solution to the problems just outlined. Furthermore we
use a pseudo-domain called the share domain to be the actual owner of the shared
pages. The reasoning behind this is that Potemkin uses this approach for handling
shared pages, hence we gain compatibility. Thus when step 3 in the algorithm
above allocates a new page, this is allocated to the share domain. As both domains
relinquish the pages that should be shared, the VMM can free (through a ballooning

2To even realize this, new hypercalls would be needed to enable a VM to request more memory
at runtime. Furthermore it would presumably require extensive modification to the guest OS to be
able to use this for anything useful.

40

S R

DY

X1 X2 X3 Y1 Y2

DX

(a) S and R are shareable pages which belongs
to domain DX and DY

S

DX

X1 X2 X3 Y2

DY

(b) S is shared between the two domains DX

and DY

S

DX DY

X1 X2 X3 X4 Y2

(c) DX allocates a new private page as a result
of a CoW-fault

Figure 5.4: Possible new vulnerability. When sharing pages between two domains
DX and DY . First the page S can be shared with R, so it gets reclaimed by the VMM.
Then the CoW-share is broken and domain DX needs to allocate a new private page
X4, but DY still references domain DX ’s page X2.

process in the paravirtualized design or directly if in the transparent design) the
pages.

It should be noted that this approach does have some drawbacks as we have
an additional task of having to copy an entire page. We do however deem that
the simplicity obtained is worth this extra operation. In the transparent design, this
could however easily be avoided. Instead of allocating a new page, one page is chosen
and page ownership is altered to the special domain. This is possible because of the
extra level of indirection obtained by the P2M table. Doing the same thing in the
paravirtualized design could easily prove to be a complicated task, mainly because
the OS is not used to losing a page.

We will now stepwise explain the algorithm to handle write faults on shared
pages:

1. The VMM receives a write fault from the Memory Management Unit (MMU).
If it is a write fault to a shared read-only page, then it is converted to an event
and sent to the corresponding VM. If not, it is handled as a normal page fault
and propagated to the VM.

2. The VM receives the event of a shared read-only write fault. It makes a copy
of the shared page and updates its current PT to point to its new own private
copy.

41

3. The PT updates are validated as normal by the VMM. If a reference to a
shared page has been removed, then the reference count is decremented. If the
reference count reaches zero, then the page is freed.

As it can be seen we have to introduce new events and the VMM has to check for
shares when validating PT updates. Now that we have presented the paravirtualized
design we will continue with the transparent design.

5.3.2 Algorithms in the Transparent Design

As explained the difference in this design, compared to the previous, is that the CS
component is placed in the VMM and there is a level of abstraction between virtual
and machine addresses provided by the P2M tables and SPTs. The CS component
just updates the P2M tables with the new mappings, which simplifies the algorithms,
because the VMs are never involved. As with the other design we now present the
algorithm for sharing pages:

1. Hashing and Content Index Lookup: The PH component hashes a page
and inserts the hash value into the content index through the HI component.
When the hash value is inserted there can be two different outcomes: 1) The
hash value has not been seen before and is added to the content index or 2)
the hash value has been seen before and we have a sharing opportunity.

2. Atomic Phase Begins: The following operations are critical. Therefore we
need to ensure that there are no switches from the VMM to the VMs involved
during the following steps, as doing this may leave the system in an inconsistent
state.

3. Page Comparison: If the pages are actually identical, then proceed to step 4.
If they are not identical then we have a hash collision or changes has happened
to one or both of the pages since they where hashed. Then we have to bail out
and end the atomic phase.

4. Mappings are Updated: The VMM changes the mappings in the P2M tables.

5. Shadow Page Table Synchronization: The SPTs are invalid as the map-
pings they contain have been changed, so they must be synchronized.

6. Reference Count Update: The VMM updates the reference count for the
involved pages.

7. Atomic Phase Ending: The updates are done and we can resume normal
mode of operation.

The SPTs will be synchronized in step 5, therefore in this design it would be
preferable to batch the operations, as synchronizing the SPTs is expensive if per-
formed each time a single page is shared.

The last thing we need to show is the stepwise description of a write fault to a
shared read-only page. It is presented here:

42

1. The VMM receives a write fault from the MMU. If it is a write fault to a shared
read-only page, then we continue with step 2. If not it is handled as a normal
page fault and propagated to the VM.

2. We copy the content of the page to a free page and update the P2M entry to
point to this new page. Finally the current SPT is synchronized to ensure that
the changes are propagated.

3. The reference count for the given shared page is decremented. If the count
reaches zero, then the page is freed.

5.4 Changes to the Original Design

For those familiar with our original design in [33], we now explain most of the changes
we have made since then. If not familiar with the old designs, you may skip this
section.

The designs were originally split into three components: PH, CS and RM. The
RM component was further divided into two subcomponents: HI and PC. This
separation proved a little inconvenient, so we decided to move the HI subcomponent
from the RM to the PH. This allows the PH component to insert the hash values
directly into the content index, instead of placing it in a buffer and waiting for the
HI component to service it. It should be noted that if the PH component was not
located in the VMM, this was not possible. Finally we note that the paravirtualized
design was called the “hypervisor level design” and the transparent design was called
the “transparent hypervisor level design”.

Last semesters report suggested that we could choose to either do continuous
hashing or flush the content index after each scan. We have chosen to flush the
index after each scan, as this keeps the implementation as stateless as possible.
Furthermore doing continuous hashing incurs the overhead of doing reverse lookup to
maintain the content index, so flushing might even be more efficient. For more details
see [33, p. 60-62]. A final note on the continuous hashing option, is that VMware’s
optimization where they always check if a page can be shared before swapping it
out (from the VMM) to disk [58, p. 6], is not possible or at least difficult without
continuous hashing. Furthermore flushing seems reasonable, because Xen as of this
writing is not able to do swapping to disk from the VMM.

Furthermore the report discussed whether it was worth to resolve conflicting
hash values. As we concluded in the report, this was not feasible as the probability
of a collision with the hash function was too low to bother. The worst possible
consequence is that we might miss a page sharing opportunity.

As for the hash function itself, as we concluded in the report, we chose to use
the SuperFastHash[30] hash function. We did a number of experiments regarding
the function and found it to be excellent in terms of low collision rate, uniform
distribution, speed and code complexity. Our only concern was that the experiments
were carried out on random data and as such this could not reveal any potential
pattern related flaws in the function. Successively we tested the function on real
data and found still no flaws.

43

5.5 Summary

In this chapter we presented two different designs: Transparent design and paravir-
tualized design. The first uses shadow page tables to share pages between virtual
machines in a manner that is transparent to the virtual machines. The second uses
common operating system functionality to share pages with the cooperation of the
virtual machine.

First we presented the components needed to explain the architectures of the de-
signs. After having presented these and the actual architectures, we gave algorithms
for creating shares and tearing down shares when private copies were needed. From
these descriptions we quickly found that the transparent design was the most simple
design to implement. It did however have the disadvantage of having to use shadow
page tables.

Finally we explained how the designs had evolved since the report was written
last semester.

44

Chapter 6

Implementation

This chapter describes how we constructed our implementation and explains de-
sign choices made during the process. We start by accounting for the status of
the implementation. From this we move onto an overall description of the im-
plementation and finally we explain selected parts of the implementation in de-
tails. Our implementation and instructions on how to install it, can be found on
http://www.cs.aau.dk/~mejlholm/dat6/cbps/.

6.1 Implementation Status

The transparent design is fully implemented. The paravirtualized design is as of yet
only able to receive events about pending shares and set them up. None of the code
in the Virtual Machine Monitor (VMM) that is supposed to check that the shares
are set up correctly has been written. As this design has not been fully carried out
and tested we acknowledge that it may still contain undiscovered design flaws. In
the descriptions that follow, whenever talking about this design, we are explaining
how we expect the implementation to be.

As for the actual implementation we started out trying to implement the entire
scheme ourselves, mainly because the Potemkin code seemed unstable. We were not
interested in fighting bugs that the Potemkin developers could not find. Later in
the semester we however received an updated version of the Potemkin code, which
seemed stable. At that time we were fighting bugs due to our own Copy-on-Write
(CoW) implementation and decided to try to make use of the Potemkin code to see if
that would eliminate the bugs. This proved more stable, so we decided to streamline
our implementation with the Potemkin code. The combination of both content based
page sharing and forking (as described in Section 3.4 and 3.5 on page 22) should
presumably form a powerful combination. The Potemkin patch set from April, as
we used for the implementation is built upon the Xen unstable repository changeset
9515.

As for the amount of code written/modified for our implementation, the total
amount of changes to Xen was roughly 3600 lines of code. This included the Potemkin
patchset, which alone changed roughly 1200 lines of code. Our part of the changes
was thus roughly 2400 lines of code.

One thing that should be noticed is that the privileged Virtual Machine (VM)

45

http://www.cs.aau.dk/~mejlholm/dat6/cbps/

cannot partake in the sharing, as translated Shadow Page Tables (SPTs) are not
supported for this VM by Xen as of this writing. This could very well change, either
by Xen getting support for a translated privileged VM or by use of the CoW Sharing
(CS) module for the paravirtualized design.

6.2 Overall Description

The heart of the implementation is the rm main reference manager function, which
is called whenever the VMM is running its idle loop. This way we ensure that we
only use processor cycles that would otherwise be wasted. Figure 6.1 serves as an
overview of what functionality is called from within this important function.

rm main reference manager

compare pages

share pages

softirq pending

do softirq

ph pagehash mfns

ph pagehash domains

idle loop

Figure 6.1: Call graph for the most significant functions in the reference manager.

The function has three different responsibilities: 1) Activate page hashing to
identify possible shares, 2) page comparison of potential shares and 3) setting up
confirmed shares by activating the CS components.

Normally the VMM uses softirqs to signal that the idle loop should terminate.
Therefore we check if there are any softirqs pending from multiple points in the
implementation. This ensures that the system still remains responsive.

The component keeps a timestamp of the last successful page hashing round
and uses this to wait a predefined period (currently one minute, but can easily be
changed) between each page hashing.

The page hashing has two different modes: Scan machine frames or scan domains.
In either case we make sure to scan the share domain before looking for new shares.
There is a subtle detail to this choice. Any pair of identical pages can have any of
the following three combinations, which require different actions:

Both pages are unshared: As of this writing the implementation copies the con-
tents of one of the pages to a new page and sets up the sharing. We are working
on another version which simply converts one of the pages to be the shared

46

page, this is however not implemented completely. The latter should be prefer-
able as it avoids the page copy, but will only be possible in the transparent
design.

One page is shared: As one of the pages is already shared, all we have to do is to
point the unshared copy to the shared and update the reference count. Simple
and efficient.

Both pages are shared: An unlikely scenario, but it does happen from time to
time. We regard it as unlikely because this means that somehow the content
index logic failed and two shared copies of the page has been created. In this
case the page with the lowest reference count should be converted to point to
the page with the larger reference count. This includes searching all Physical-
to-Machine (P2M) entries, to find entries that point to the page with the lower
count or keeping a separate data structure. We are not interested in doing any
of these, so we simply ignore this case. A better solution is to try to avoid the
case completely and further work will be to determine exactly why this occurs.

The reason why we scan the share domain first is in anticipation that we hit the
case with one shared page and one unshared, and avoid the last case.

To optimize we avoid certain page types, which we deem unfit for sharing, to
speed up the page hashing. We elaborate on this in Section 6.6 on page 62. Fur-
thermore to reduce the size of the content index, we divide the hash value space into
intervals and scan all pages for each interval, we will explain this in more detail in
Section 6.7 on page 65.

Whenever a page hashing round has been successfully completed, the content
index is flushed. While this sounds expensive, the alternative (to always keep the
content index up-to-date) is more expensive. The expenses are both in terms of space
usage and processing, because to be able to remove old entries from the content index
we need to keep a reverse content index or otherwise search through the entire data
structure. The reverse content index would consume 4 MB with 4 GB of memory
as we need one pointer for each element in the content index. Therefore we gladly
sacrifice some of our idle processor cycles to avoid the extra data structure.

Whenever the page hashing component finds potentially identical pages, the ad-
dresses of the two pages are inserted into a buffer shared between the Reference
Manager (RM) and Page Hashing (PH) components. If the buffer is filled, then the
page hashing component is terminated. The first thing done in the next idle loop
is to service the contents of the buffer. If the page hashing component stops due to
pending softirqs then the contents of the buffer is always serviced first.

When examining any pair of candidate pages for sharing within the buffer, the
pages are mapped into the Xen part of the Page Table (PT) of the last process to
run before entering the idle loop (Xen does not change PT before a switch to the
idle loop). This caused some difficulties for us, so we explain this in some detail in
Section 6.3 on page 50. When the pages are mapped in, we do a page comparison. If
they are found to be identical then we can safely share them. No matter the outcome
before, both pages are unmapped from the PT.

As for the actual comparison we use the memcmp functions. On processors that
support this instruction this is used, otherwise a string version is used. The string

47

version searches through both pages in character sized chunks, searching for the first
set of characters that differ from each other. If any are found, then it returns the
difference. If no difference is found it returns zero.

According to [4] the processor supported version of memcmp is rather slow. Con-
sequently he wrote another version that is supposed to be 4-6 times faster than the
processor supported version on the IA-32 architecture. As the page comparison is
a central part of our implementation, investigating another implementation of the
memcmp function may very well prove feasible.

From this point on the CS components are activated, so the proceeding actions
differ. The transparent version is the simpler, so we start with this.

The transparent solution requires that nothing changes within the two domains
affected by the share. Therefore we pause both domains (standard Xen functionality)
to ensure that they are not run while we change the mappings.

The updating of the page mappings are done as described above by the use of
Xen’s Shadow Page Table (SPT) implementation. In particular we need to update
both the P2M and Machine-to-Physical (M2P) tables. The latter is also necessary
because of the shadow mode used. While the domain is running in shadow mode, it
is still a kernel modified by Xen using hypercalls, event channels etc. This mode is
highly dependent on the M2P mapping, so we need to ensure the correctness of this
table also. The SPTs are then resynchronized and the domains are again unpaused,
free to resume operation unaware of the changes. We explain this in more details in
Section 6.4 on page 52.

The paravirtualized solution takes another approach. Instead of simply updating
the mappings, we turn to the Operating System (OS) internals to update the map-
pings. The CS module running inside an OS is sent an event signaling that shares
are pending. A pair of addresses (to and from) are placed in a buffer shared between
the module and the VMM. The module then reads the addresses and updates the
mappings. We do not describe this in further details as it is not yet fully imple-
mented. Finally the VMM is automatically notified about the PT updates as a side
effect of the hypercall used to update PTs.

The hypercall can be used to register that a given share has been committed
by the involved OS. In order to guarantee the safety of the system, it becomes
necessary to track whether the shares, that the CS modules have been instructed to
create, actually have been carried out. In order to keep track of this, a separate data
structure is needed, unless we can find an existing structure that may be modified
for the purpose. Given this structure, it would be needed to periodically check if
any of the pending shares have been outdated.

To keep track of how many references there are to any given page we use Xen’s
type and reference counts, as explained in Section 4.2 on page 28. As the type count
is a 16 bit value, there is a possibility of overflowing it if a certain type of page
content is frequently shared. VMware noted the same problem with sharing zero
pages [58, p. 6]. Sharing zero pages is a little bit of a dilemma, so we save the
discussion of whether this is actually feasible until Section 7.3 on page 74. For now
we just note that sharing zero pages is optional in the implementation. If zero pages
are shared, then a workaround is needed. VMware’s solution was to use pointers to
create an arbitrarily large reference count. Ours is to always allocate one zero page
and point all others to this. Recall that the type count is used to prevent a page

48

from changing its type or being freed. As we alone have control of the allocated zero
page, we do not need to track the type count of the page.

Instead we can suffice with updating the reference count, which is a 29 bit value
that takes a while longer to overflow. In fact as the 29 bits can represent a value
up to 229 − 1, which would require 100 VMs to have approximately 5368709 zero
pages (2.1 GB of zeros) each, to have the value overflow. This of course is a hack
and it does not protect us from overflow on other page contents, which will overflow
on 216 − 1 = 65535 values.

The pages freed by the sharing operation are returned to different pools depend-
ing on the CS module used. If SPTs are used, then the page is simply freed to the
Xen domheap. This is Xen’s primary source of free pages, which is used for almost
all purposes e.g. when allocating pages to create a new domain. If the CS module
implemented within the OS is used, then the page should be freed to the free pool of
the OS. The VMM can then decide to balloon pages out depending on the memory
pressure of the VM and the other VMs.

The description so far accounts for what happens when shares are being set up.
All that is left is a description of what happens when a page fault to a shared page
occurs. This is an event that is handled by the different CS components.

In the shadow version we rely on the functionality that is provided by the
Potemkin code. When this event takes place we need to create a private copy for
the faulting domain. This can be done in two ways: 1) Copy the contents of the
faulting page to a new page and update the mapping to point to this or 2) if the
reference count is exactly one, then the shared page can be converted to a private
copy. The first has the overhead of having to do a page copy, while the latter simply
removes the shared status, thus avoiding the page copy. It should be noted that the
convert option is currently disabled in the implementation as it seems unstable. One
could be surprised that this part of the Potemkin code is unstable, but the code has
probably not been thoroughly tested because when a domain is forked in Potemkin
the parent VM is suspended. From the suspended state it is not possible to resume
operation, so the pages will reside in memory until either the VM is destroyed or
the machine is halted. Thus as the pages retain unmodified and always with a count
of more than one, it seems unlikely that the convert operation has been thoroughly
tested.

Handling page faults in the paravirtualized design is another case. Normally in
Xen, page faults to a paravirtualized VM are propagated to the OS. We expect to do
just the same, as the OS should normally determine that the page fault was due to a
write operation to a shared read-only page. In the context of a page fault there should
be no difference between a page shared CoW inside a single OS and interdomain.
As for the reference count, this should be automatically handled by Xen when the
OS tries to update the current PT. Again, this has not been fully implemented and
tested, so we might not have discovered problems with this approach.

This concluded the overall description of the implementation, the following sec-
tions address noteworthy topics that deserve extra explanation.

49

6.3 Super Page Problem

In this section we will outline an obstacle that took us a lot of effort to overcome.
So much effort that we deem it is worth mentioning in the thesis.

The IA-32 is not restricted to using page frames with a size of 4KB, it can also
use 4 MB pages frames. These are referred to as super pages or huge pages. Page
frames of both sizes can coexist. A virtual address using the 4 MB page frames
consists of 32 bit as normal, but instead of dividing it into a 10 bit PGD entry, a
10 bit PTE and a 12 bit offset, it is only split into a 10 bit PGD entry and a 22 bit
offset1. [9, p. 49-50]

To determine whether a given page is a super page or ordinarily sized, the Linux
kernel uses one bit, called the PAGE PSE flag, in the PTE entry for the given page.
For the curious PSE is an abbreviation for Page Size Extension.

Normally the Translation Look-aside Buffer (TLB) has an entry for each of the
pages recently used. By using super pages a larger virtual addresses area can be kept
in the TLB, because the pages each cover a larger amount of the physical memory.
Thus the benefits of using super pages is that the translation of virtual addresses
may be sped up on systems with large amounts of memory.

Xen has its own heap, accessible to tasks within the hypervisor itself. To reduce
the need to do TLB flushes, Xen uses super pages to map the individual page frames
of the heap. As these are only mapped into the PGD, replacing these are somewhat
difficult as we will explain shortly.

Whenever a Page Table (PT) is created (governed by the hypervisor), it is built
from a predefined PT called the idle PT. In particular what happens is that the
contents of the idle PTs PGD is copied onto a new page. As the idle PT contains
entries pointing to every PTE spanning the Xen part of the address space (as we
described in Section 4.2 on page 28), the newly created PT contains the Xen map-
pings by default, as pictured in Figure 6.2 on the facing page. A direct consequence
of this, is that the last 16 entries (which spans the Xen area of the virtual address
space), are identical on all PTs, unless updates to them are done. Normally Xen
does not do this.

Both the task of page comparison and page hashing needs to be able to access
the contents of any given page frame. Because the IA-32 does not allow direct access
to the contents of page frames[25, p. 153],[9, p. 69] after paging has been enabled
on the processor, we need to map the page frame into the Xen specific part of the
current PT.

To have a number of virtual addresses to which it is safe to map the pages onto,
our first approach was to allocate a number of pages at boot time. At that time
we were not aware that the Xen heap was mapped using super pages. The pages to
map onto were allocated from the Xen heap and were thus mapped into the virtual
address space as super pages as pictured in Figure 6.2 on the next page.

Now, we wanted to use the virtual address to map any given page onto, thus we
were trying to replace an entry in the PGD (remember super pages are mapped only
into the PGD) as pictured in Figure 6.3 on page 52. As the PGDs in the system are
not shared (although once copies of the idle PT’s PGD), the changes made to the

122 bits are necessary to address each byte within the 4 MB page frame.

50

PTE

PTE

PTE

PTE

PTE

PTE
PTE

PTE

PTE

PSE

PSE

PTE

PTE

PGD

PGD

Figure 6.2: Page Table (PT) layouts in Xen. On the left are ordinary PTE tables,
which are private to each PT. On the right are the PTEs representing the Xen
address space, which are shared between all PTs. Green PSE pages indicate the
super pages of the Xen heap.

PGD will not be propagated to the all the other processes PGDs. In fact changes
made to any PGD using the map pages to xen() function, which we used, are only
applied to the idle PT’s PGD.

Because of this behavior we experienced some odd results: Sometimes the page
scanning reported that all pages were zero pages and sometimes it worked just as
expected. Our guess is that the wrong results were caused by obsoleted PT entries
that pointed into the Xen heap through super pages, thus pointing to some arbitrary
place in the page, while the normal results were obtained on PTs that were created
after the idle PT was updated. To be fair, we note that the function works fine when
updating the PTE tables, because these are in effect shared between all processes in
the system.

A result of this is that, when we map a given page onto the Xen address space,
the hardware most likely will not see the change. A quick solution is to compile the
hypervisor with the debug compile option enabled, which forces the Xen heap to use

51

Page Frame

Page Frame

PTE

PTE

PSE

PGD

(a) Before

Page Frame

Page Frame

PTE

Page Frame

PTE

PTE

PGD

(b) After

Figure 6.3: When replacing a super page entry in the idle PT’s PGD, the function
allocates a new page to use as PTE table and points the PGD entry to point to the
new page. It then populates the new PTE table with entries corresponding to the
part of the virtual address space covered by the super page. Finally the TLB entry
for the super page is flushed.

normal page mappings instead of super pages, thus solving the problem for the time
being. [20]

Another and better solution to the problem is to use the map domain page() func-
tion instead of the map pages to xen() function. This looks through a 4 MB reserved
part of the Xen address space to locate a vacant PTE entry and maps the page into
that slot. The reserved part of the Xen address space is represented by a bitmap
(one bit for each entry in the corresponding PTE) and a cursor to the next predicted
vacant slot. For those familiar with bitmap memory management[50, p. 199-200],
this technique resembles it a lot. The difference being that instead of using the
bitmap to keep track of vacant pages, the bitmap is used to keep track of vacant
virtual addresses.

The function needs to flush the TLB when the cursor exceeds the number of
entries in the bitmap, because this triggers some fixup code. This will therefore
happen every 1024 time we map a page in. Using this function removes the need to
manually find a set of virtual addresses that are safe to map onto at all times, thus
solving our problem.

6.4 Sharing Pages

We will now explain the details for the part of the implementation that is responsible
for creating the actual sharing. In particular we will explain the code that is respon-
sible for changing the mappings in the P2M and the M2P tables. This is carried out
by our cs change mapping function, which is called by the share pages from within

52

the reference manager. To provide an overview of the call hierarchy in this function
we provide Figure 6.4. To better understand the code in this section, we advice the
reader to keep referring to the figure while reading the code. The code referred to in
this section and the following is based on our own repository, specifically changeset
9779.

cs change mapping

get page and type

cs guest physmap remove page

cs guest physmap add page

put page and type

shadow remove all access

shadow sync and drop references

set p2m entry

set gpfn from mfn

Figure 6.4: Call graph of the functions used when setting up shared pages.

We will explain the internals of this function by following the logical flow of the
code as it would be executed in a normal run. For the sake of simplicity, we omit
such things as debugging and sanity checking etc. For all the details we refer the
reader to the source code. Our approach is to show the code in appropriately sized
parts and immediately after explain the code. This means that we will skip large
portions of code that is irrelevant to a basic run.

As said, we start with the cs change mapping function, which can be found in
xen/common/cs sharing.c starting on line 49. It should be mentioned that the VM
owning the page to be shared has previously been paused, meaning that it will not
be allowed to run on any processor. This was a direct consequence of beginning the
atomic phase as described in the transparent design in Section 5.3.2 on page 42.

int cs_change_mapping (
struct page_info ∗from , struct page_info ∗to)

{
unsigned long gpfn = 0 ;
unsigned long mfn = 0 ;
struct domain ∗owner = NULL ;

mfn = page_to_mfn (from) ;
owner = page_get_owner (from) ;
gpfn = get_gpfn_from_mfn (mfn) ;

The parameters taken by the function are from page and to page, which means
that we want to change the mappings from the from page to the to page.

We get the Machine Frame Number (MFN) and owner by using functions that
looks up the information in Xen’s data structures. The Guest Physical Frame Num-
ber (GPFN) is retrieved by a function that collects it from the M2P table. This is the
entry that we want to update, so it will point to the new address (the to page) as a

53

result of the function call. The difference between MFN and GPFN was explained
in Section 4.2 on page 28.

get_page_and_type (to , dom_cloned , PGT_writable_page) ;

Here a type and page reference is taken to the page we want to change the
mapping to. This is done since we are about to change our mapping to point to this
page, so taking a reference to it is necessary.

Shared pages are identified by the fact that they are owned by the cloned domain.
Originally we named it the share domain, but in our effort to synchronize with the
Potemkin source code we switched to use the domain already used there. Therefore
in this code, the reference is taken on behalf of the cloned domain, since this page is
going to be a shared page. The type of the page is PGT writable page, which is the
same as the RW page type that was explained in Section 4.2 on page 28.

shadow_lock (owner) ;

/∗ Unmap from o ld l o ca t i on , i f any . ∗/
i f (gpfn != INVALID_M2P_ENTRY) {

cs_guest_physmap_remove_page (
owner , gpfn , page_to_mfn (from)) ;

}

The next interesting bit is when the shadow lock is taken. This is done since we
are about to change the mapping in the P2M and M2P tables. The approach used to
do this is first to remove the old entries and then add new entries that reference the
shared page. This part only shows the removing part and we return to the adding
part later.

First the GPFN is checked to see if it is a valid GPFN. If this is the case,
then we need to remove it from the M2P table2. This is performed by a call to our
cs guest physmap remove page function, which can be found in xen/common/cs sharing.c

on line 17. It is structured as follows:

stat ic inline void cs_guest_physmap_remove_page (
struct domain ∗d ,
unsigned long gpfn ,
unsigned long mfn)

{
struct domain_mmap_cache c1 , c2 ;

domain_mmap_cache_init(&c1) ;
domain_mmap_cache_init(&c2) ;

shadow_sync_and_drop_references (d , mfn_to_page (mfn)) ;

set_p2m_entry (d , gpfn , −1, &c1 , &c2) ;
set_gpfn_from_mfn (mfn , INVALID_M2P_ENTRY) ;

domain_mmap_cache_destroy(&c1) ;
domain_mmap_cache_destroy(&c2) ;

}
2Actually it is not removed entirely, it is replaced by a special INVALID M2P ENTRY entry.

54

First c1 and c2 are initialized. These are used by the set p2m entry function,
which again uses map domain page with cache to map in the P2M table. Actually the
first function does not use the caches, it only passes them onto the latter function.
The latter function is similar to the map domain page, which we explained in Sec-
tion 6.3 on page 50. The only difference is that a “cache” is kept outside of the
function, so the virtual address used to map into can be reused if the MFN is the
same.

Then shadow sync and drop references is called, which checks whether the page
mappings are out of sync. If so, then all pages that are out of sync are synchronized.
Furthermore the function also removes all references to the from page in the SPTs
by a call to shadow remove all access. We will return to this latter function later in
the section.

Finally its time for actually updating the mappings: First set p2m entry updates
the P2M mapping with a value of −1, which indicates a none existing entry. Then
the M2P table is updated in the same manner with an INVALID M2P ENTRY. Lastly the
caches are destroyed.

Returning to the cs change mapping, the next step is to add the to page instead
of the removed entries.

/∗ Map at new l o c a t i o n . ∗/
cs_guest_physmap_add_page (owner , gpfn , page_to_mfn (to)) ;

The cs guest physmap add page function updates the P2M and M2P tables with
the to page. This function can be found in xen/common/cs sharing.c on line 34 and
resembles the cs guest physmap remove page a lot, the difference being the arguments
to the functions that are called by the function.

stat ic inline void cs_guest_physmap_add_page (
struct domain ∗d ,
unsigned long gpfn ,
unsigned long mfn)

{
struct domain_mmap_cache c1 , c2 ;

domain_mmap_cache_init(&c1) ;
domain_mmap_cache_init(&c2) ;

shadow_sync_and_drop_references (d , mfn_to_page (mfn)) ;

set_p2m_entry (d , gpfn , mfn , &c1 , &c2) ;
set_gpfn_from_mfn (mfn , gpfn) ;

domain_mmap_cache_destroy(&c1) ;
domain_mmap_cache_destroy(&c2) ;

}

set p2m entry updates the P2M table with the MFN of the to page, such that
GFPN now maps to it. Then the M2P table is updated by the set gpfn from mfn

function, so that the MFN of the to page points to the GPFN, The reader might
wonder why it is nessesary to call the shadow sync and drop references. The reason
why this is done is more as a precaution than as a necessity. For example if a page

55

is not freed correctly, then it might still have SPTs pointing at it or not be fully
synchronized.

Having explained how to add and remove pages, we now return to the main
function cs change mapping, where we call:

shadow_remove_all_access (owner , mfn) ;

This removes all of the entries referencing the given MFN in the SPTs of the
faulting domain. When these have been removed, then access to one of these obsolete
entries will result in a page fault. The SPT implementation checks if the fault was
due to a missing entry in the SPT and thus updates it on demand with the missing
entry. This way we do not have to fully synchronize the SPTs every time we setup
a share.

shadow_unlock (owner) ;

put_page_and_type (from) ;
domain_unpause (owner) ;

return 0 ;
}

We have now changed the mapping we wanted. Both the type and reference
counts are decremented on the from page, since we have updated a pair of mappings
to use another page. If the reference count reaches zero then the page is freed as a
side effect. Lastly we unpause the domain on which we have updated the mappings,
which corresponds to ending the atomic phase, as described in Section 5.3.2 on
page 42.

Finally it is important that the shared pages are only mapped into the SPTs
as read-only. This is achieved by removing read-write flags on pages owned by the
clone domain when the guest OSes PTs are propagated to the SPTs.

One important note is that by using Xen’s reference counting mechanisms and
always keeping the system in a consistent state, we automatically ensure the cor-
rectness of the system. A consistent state involves always either fully creating the
share or rolling back the changes as well as ensuring that the shared pages are only
mapped read-only. Fully creating the share involves such things as keeping both the
P2M and M2P tables as well as the SPTs consistent. To ensure this, we make sure to
explicitly synchronize the tables as we create the shares or tear them down.

6.5 Handling Page Faults to Shared Pages

Having covered how pages are shared, we now explain how the shares are torn down
again. Recall that this takes place when a write operation is performed to a shared
read-only page. The typical call trace for this operation is illustrated in Figure 6.5
on the next page. Again, as with the previous section, we only explain the path that
leads to the CoW break handled by the cow break sharing function. We remind
the reader that this function is a part of the Potemkin framework.

56

cow break sharing

page is cloned

alloc domheap page

get page and type

put page and type

map domain page

memcpy

unmap domain page

set gpfn from mfn

set p2m entry

shadow remove all access

l1pte write fault

shadow fault

fixup page fault

do page fault

Figure 6.5: Call graph for a CoW break operation. A series of filtering logics leads
to calling the cow break sharing function.

57

Determining what kind of page fault we are dealing with is a long sequence of
events, which starts with a page fault being raised by the hardware. The do page fault

function is registered as the handler for this event.
The input parameter to this function is struct cpu user regs *regs, which is a

pointer to the CPU registers. From this, we are able to retrieve the address that
caused the fault by reading the cr2 registry. The function is located on line 689 in
xen/arch/x86/traps.c.

asmlinkage int do_page_fault (struct cpu_user_regs ∗regs)
{

unsigned long addr ;
int rc ;

__asm__ __volatile__ (”mov %%cr2 ,%0” : ”=r ” (addr) :) ;

i f (unlikely ((rc = fixup_page_fault (addr , regs)) != 0))
return rc ;

The read value is placed in the addr variable and can now be used to call the
fixup page fault, as can be seen in the call graph. This function can be found in
xen/arch/x86/traps.c on line 587:

stat ic int fixup_page_fault (
unsigned long addr ,
struct cpu_user_regs ∗regs)

{
struct vcpu ∗v = current ;
struct domain ∗d = v−>domain ;

First v is pointed to the current virtual CPU, which essentially just is a software
representation of the state of the VM’s processor. Since the page fault happens in
the context of the current virtual CPU, the domain that caused the fault is the
one currently running on this virtual CPU. Hence we can determine which domain
caused the page fault.

In the process of determining which kind of page fault caused the fault, a lot of
logics are evaluated. The logic that we end in is the following:

else i f (unlikely (shadow_mode_enabled (d)))
return shadow_fault (addr , regs) ;

This leads to the call of shadow fault. To understand the next code snip we first
introduce the possible error codes that the page fault could have. An error code
about what caused the fault can be retrieved from the processor registers, which can
contain the following values:

/∗
∗ #PF error code :
∗ Bit 0 : Pro tec t i on v i o l a t i o n (=1) ; Page not pre sen t (=0)
∗ Bit 1 : Write acces s
∗ Bit 2 : User mode (=1) ; Superv i sor mode (=0)
∗ Bit 3 : Reserved b i t v i o l a t i o n
∗ Bit 4 : I n s t r u c t i on f e t c h

58

∗/
Listing 6.1: Page Fault (PF) error codes.

We are interested in the page fault that happened due to a write access, hence
the second bit is the one of interest (named “Bit 1” in the listing above).

Now lets see the relevant parts of the function shadow fault, as it can be found
in xen/arch/shadow32.c on line 3041.

int shadow_fault (unsigned long va , struct cpu_user_regs ∗regs)
{

l1_pgentry_t gpte , spte ;
struct vcpu ∗v = current ;
spte = l1e_empty () ;

/∗ Write f a u l t ? ∗/
i f (regs−>error_code & 2) {

i f (unlikely (! l1pte_write_fault (v , &gpte , &spte , va)))

As the second bit is set3, we enter the if statement in the second last line. From
this statement the l1pte write fault function is called. This function can be found
in xen/include/asm-x86/shadow.h on line 849. The function mostly contains sanity
checks before we reach the point where cow break sharing is called.

stat ic inline int l1pte_write_fault (
struct vcpu ∗v ,
l1_pgentry_t ∗gpte_p ,
l1_pgentry_t ∗spte_p ,
unsigned long va)

{
struct domain ∗d = v−>domain ;
l1_pgentry_t gpte = ∗gpte_p ;
unsigned long gpfn = l1e_get_pfn (gpte) ;

i f (__cow_break_sharing (d , gpfn))

It is called with the parameters d and gpfn, where d is a pointer to the domain
the page fault happened in. The second parameter, gpfn, is the page we got a write
fault on.

We have now reached the function where the actually CoW break takes place.
This is a rather large function so we will take it piece by piece. The function
cow break sharing can be found in xen/arch/x86/shadow32.c on line 173.

int __cow_break_sharing (struct domain ∗d , unsigned long gmfn)
{

unsigned long mfn ;
struct page_info ∗page ;

/∗ Shared pages are on ly permi t t ed
∗ f o r t r a n s l a t e d domains . ∗/

i f (! shadow_mode_translate (d))

3Remember that 2 is 10 in binary, so we get the bitmask we need.

59

return 0 ;

mfn = gmfn_to_mfn (d , gmfn) ;
i f (! VALID_MFN (mfn))

return 0 ;
page = mfn_to_page (mfn) ;

i f (! page_is_cloned (page))
return 0 ;

As parameters it takes the two variables d and gmfn, as explained in the text
above. Note that what we before called gpfn are now named gmfn.

So far only a set of checks have been evaluated, which ensures that 1) the faulted
domain is in shadow translated mode, 2) a valid MFN can be found in the P2M table
and 3) that the page faulted on is owned by domain cloned.

/∗ For pages which are t r u l y shared , we must make a copy .
∗ I t ’ s p o s s i b l e t h a t we race wi th another domain which i s
∗ c a l l i n g cow break sha r in g on the same page , but the
∗ worst−case scenar io i s t ha t both domains make a copy o f
∗ the page and the o r i g i n a l page i s f r e ed (in s t ead o f
∗ be ing conver ted to an unshared page) . ∗/

i f ((page−>u . inuse . type_info & PGT_count_mask) > 1)
{

struct page_info ∗p = NULL ;
unsigned long omfn , nmfn ;
char ∗parent_page , ∗child_page ;
struct domain_mmap_cache l1cache , l2cache ;

p = alloc_domheap_page (d) ;

omfn = gmfn_to_mfn (d , gmfn) ;
nmfn = page_to_mfn (p) ;

Based on the type count, we choose either to create a private copy by copying
or by converting. If the count is larger than one, then we must make a copy. If not,
then we can convert the page to point to the domain. We start with the code for
the first outcome.

The first thing done in the copy approach, is that a page is allocated and its
owner is set to the domain which caused the page fault. Then the original MFN is
retrieved by calling gmfn to mfn, which uses the P2M table of the domain given.

parent_page = map_domain_page (omfn) ;
child_page = map_domain_page (nmfn) ;

memcpy (child_page , parent_page , PAGE_SIZE) ;

unmap_domain_page (child_page) ;
unmap_domain_page (parent_page) ;

In order to copy the page, the two pages are mapped in. Then the actual page
copy is done and the pages are unmapped again. Having created the private copy,

60

this needs to be taken into use.

set_gpfn_from_mfn (nmfn , gmfn) ;

domain_mmap_cache_init(&l1cache) ;
domain_mmap_cache_init(&l2cache) ;

set_p2m_entry (d , gmfn , nmfn , &l2cache , &l1cache) ;

domain_mmap_cache_destroy(&l2cache) ;
domain_mmap_cache_destroy(&l1cache) ;

First the M2P mapping is updated much like when sharing the pages, so that the
newly allocated frame points to the Guest specific Machine Frame Number (GMFN)
in the M2P table. Next the P2M table is updated, such that the GMFN points to the
newly allocated frame.

shadow_remove_all_access (d , omfn) ;

Then all access to the original machine frame number is removed. As stated
before this gives the effect that the SPTs will be updated on demand.

/∗ Drop our r e f e r ence to the o r i g i n a l page . ∗/
put_page_and_type (mfn_to_page (omfn)) ;

return 1 ;
}

Now the CoW break is almost complete, the last thing done are that the type
and reference counts are decremented. That completes the operation.

To sum up what has taken place, first a page fault happened. After it was
detected to be a write fault on a shared page and the involved VM was in shadow
mode, we carried out the actually CoW breaking. This copied the contents of the
faulting page frame to a newly allocated frame. Finally the P2M and M2P mappings
where updated to reflect the changes, so that they use the newly allocated frame,
instead of the frame faulted on.

We will now move on to explaining what happens if the type count is one. This
indicates that there is only one VM using the shared page and it can therefore be
converted instead of copied.

else {
spin_lock(&dom_cloned−>page_alloc_lock) ;
spin_lock(&d−>page_alloc_lock) ;

list_del(&page−>list) ;
dom_cloned−>tot_pages−−;
page_set_owner (page , d) ;
list_add_tail(&page−>list , &d−>page_list) ;

d−>tot_pages++;
put_page_and_type (page) ;

61

spin_unlock(&d−>page_alloc_lock) ;
spin_unlock(&dom_cloned−>page_alloc_lock) ;

return 0 ;
}

}

We are going to manipulate the page lists, so as the first thing we take the locks on
the page lists of the involved VMs. Next the faulted page is removed from the cloned
domains page list and the total number of pages for the domain is decremented. Then
the owner of the page is changed to be the faulting domain and the page is inserted
into that domains page list. Then the total number of pages of the faulting domain
is incremented, since it now has a page more.

Lastly the locks are released. This accounts for the CoW break sharing using
the convert approach. Instead of copying the page it was simply converted. This
concludes how we share and break pages.

As explained in the beginning of the chapter, we now describe how we sort out
pages that we deem it is unfeasible to share.

6.6 Filtering Pages

From VMware’s point of view, the concept behind content-based page sharing was
to identify shareable pages solely by their contents. Mostly because they had to
provide a fully transparent solution[58] and consequently they did not have much
information about the pages at hand. Xen on the other hand has to keep track of
pages (as described in 4.2 on page 28) in order to validate PT updates. Therefore
there is a lot more information available about each page. In this section we first
describe this information in more detail than in Section 4.2 and then explain how we
use this information to avoid scanning pages that we have no benefit from sharing.

VMware argued that all pages that had been found to be identical, could be
shared per definition because they are identical [58]. There is no doubt about this.
The filtering we apply is solely to reduce the amount of CoW breaks shortly after
the sharing is created. Therefore we filter out pages that we deem to have a high
probability of rapidly being modified.

The information provided in this section is based on the xen/arch/x86/mm.c and
xen/include/asm-x86/mm.h Xen files. Associated with each page is a page info struct.
This struct groups the three of the four interesting pieces of information described in
Section 4.2 together. count info contains the reference count and type info contains
the type count as well as the actual type of the page. As is customary in kernel code,
information is usually compacted into bitmaps. This is also the case with these two
counts in Xen. The layout of these are pictured in Figure 6.6 on the next page.

Listing 6.2 shows the different types a given page can have. Three bits (29-31 in
type info) are used to represent the type.

/∗ The f o l l ow i n g page type s are MUTUALLY EXCLUSIVE. ∗/
#define PGT none (0U<<29) /∗ no s p e c i a l use ∗/
#define PGT l1 page table (1U<<29) /∗ L1 page t a b l e ? ∗/
#define PGT l2 page table (2U<<29) /∗ L2 page t a b l e ? ∗/

62

3
1

2
8

2
9

3
00

PGC count

29: PGC page table

30: PGC out of sync

31: PGC allocated

(a) count info

3
1

2
9

2
8

2
7

2
6

1
5

1
60

27: PGT pinned

28: PGT validated

29-31: PGT type

PGT vaPGT count

(b) type info

Figure 6.6: Contents of the page info->count info and page info->u.type info

bitmaps.

#define PGT l3 page table (3U<<29) /∗ L3 page t a b l e ? ∗/
#define PGT l4 page table (4U<<29) /∗ L4 page t a b l e ? ∗/
#define PGT gdt page (5U<<29) /∗ GDT? ∗/
#define PGT ldt page (6U<<29) /∗ LDT? ∗/
#define PGT writable page (7U<<29) /∗ wr i t a b l e mappings ∗/

#define PGT l1 shadow PGT l1 page table
#define PGT l2 shadow PGT l2 page table
#define PGT l3 shadow PGT l3 page table
#define PGT l4 shadow PGT l4 page table
#define PGT hl2 shadow (5U<<29)
#define PGT snapshot (6U<<29)
#define PGT writable pred (7U<<29) /∗ p r ed i c t e d w r i t a b l e ∗/

Listing 6.2: Definition of the different page types. As can be seen, the types are
reused in shadow mode.

This per page information is used to filter out pages that we deem it is not feasible
to share. In particular we filter based on the following four arguments:

1. Writable Page: We require that the page must be of type PGT writable page

or PGT writable pred in shadow mode. By requiring this we sort out PTs in
normal paravirtualized mode. In shadow mode this sorts out the SPTs as well
as the hl2 and snapshot pages. We deem that all other pages than writable
pages have a high probability of being changed, so we avoid them. Here we of
course have no guarantee that a predicted writable page is not one of the other
page types. Furthermore in shadow mode, the PT status is available elsewhere:
PGC page table on count info is used to indicate that a page is a PT. Finally

63

PGT va on type info is used to keep the eleven most significant bits of a virtual
address, if the page is a PT.

2. Type Count: In paravirtualized mode this reflects how many places this page
is used with its current type. This could be used to ensure that we do not share
pages that are not mapped in by any OS. Because they are not mapped in,
there is a good probability that they will be used for time critical operations,
such as creating a private copy from a CoW shared page within the OS. Our
view on this class of pages are much like zero pages. In shadow mode, the type
count is only available in ref count mode. Here it reflects the number of SPTs
that have mapped the page in since the last flush. Therefore we cannot use
this for filtering.

3. Validated Page: If PGT validated is not set, then the page has not been
validated by the VMM for its current type. Therefore there is a good chance
that it will change subsequently, e.g. a page in the process of being converted
to a PT, so we might as well not scan it.

4. Pinned Page: The paravirtualized OS has a hypercall to pin a page to indicate
that the type must not be changed, even if the type count reaches zero. This
should indicate that the guest OS has special use of the page, so we might as
well avoid scanning it.

The actual filtering rules are compacted into two different logics: One for para-
virtualized mode (Listing 6.3) and one for the shadow mode (Listing 6.4).

#define PGT count mask ((1U<<16)−1)
#define PGT fi lter mask ˜PGT count mask

i f (! (
((pg−>u . inuse . type_info & PGT_filter_mask) ==
(PGT_writable_page | PGT_validated))
&&
((pg−>u . inuse . type_info & PGT_count_mask) != 0)

)) {
return FILTERED ;

}

Listing 6.3: Optimized filter for paravirtualized mode.

i f (! (
((pg−>u . inuse . type_info & PGT_filter_mask) ==
(PGT_writable_page | PGT_validated))
&&
! (pg−>count_info & PGC_page_table)

)) {
return FILTERED ;

}

Listing 6.4: Optimized filter for shadow mode.

64

The filtering is applied both before hashing pages, but also again right before
creating any shares. The main reason is that we have no guarantee that the pages
have not changed in the period from before hashing the pages until the sharing is
carried out. Furthermore if zero pages are chosen not to be shared, then these are
filtered out immediately after hashing them in the page hashing component.

6.7 Size of the Content Index

As the size of the content index should be proportional to the amount of machines
pages and we must be able to support up to 4 GB of memory, we have come up with
a way to limit the size of the content index in return for more work while finding
pages to share. Thus what we explain in this section is a classical time versus space
trade-off.

It should be mentioned that we assume worst case here, where no page are
identical, so each page uses a slot in the content index. This means that it can be
assumed that inserts into the content index, usually is faster than our calculations
done in [33, p. 56-58], since all the identical page (which also includes the zero
pages), will only use one slot for each identical set of pages.

Recall that a single entry in the content index contains a machine address and
a hash value representing the contents of the page at that address. Each of these
values occupy 32 bit. Open addressing requires an additional 10% size of the content
index to ensure good performance. All in all this makes it a total size of 8.8 MB
on a 4 GB machine, which would seem reasonable to use to share pages. The
total size of the Xen heap is however only 12 MB, so requiring 8.8 MB from the
Xen heap is unreasonable. The Xen heap is used to store VM meta-data on and
without any modifications the Xen heap is exhausted by instantiating 116 VMs[57,
p. 11]. This means that any space we use from the heap will affect Xen’s ability to
instantiate concurrent VMs, so space allocated from this heap should really be kept
to a minimum.

In order to remedy this we have decided to split the hash value space into in-
tervals. To explain this we have to look at the SuperFastHash (SFH) function hash
value space. It generates a 32 bit hash value, which can contain 232 different hash
values. This space is much larger than the number of entries in the content index.
This is however not a problem because we are not trying to make room for all pos-
sible outcomes of this function, as we only need one hash value for each page in the
system. As is common with hash tables, what we do is that we compute a key or
index into the content index, where we can store the SFH value and corresponding
machine address. We do this by using a secondary hash function (a simple modulus)
to reduce the address space of the SFH function. This hash function takes the SFH
value modulus the size of the content index. This will reduce the address space so
it can fit into the content index.

Our solution to this size problem is to split the SFH’s hash value space into
smaller intervals and focus on one of these at each scan. This of course requires that
the pages are scanned more than once as the pages that hashes to a value outside
the interval currently of interest are discarded. As there is an overhead in scanning
all the pages more than once, it is important to find a acceptable size for the content

65

No. of scans Entries Size in MB Entries + 10% Size with overhead
3 349.525 2.6 384.478 2.9
4 262.144 2.0 288.359 2.2
5 209.715 1.6 230.687 1.7
6 174.763 1.3 192.240 1.4
7 149.782 1.1 164.761 1.2
8 131.072 1.0 144.180 1.1
9 116.508 0.8 128.159 0.9

Table 6.1: The size of the content index relative to the number of scans with 4 GB
of memory.

Memory size (MB) Scans
512 0.625
1024 1.250
2048 2.500
4096 5.000

Table 6.2: The number of scans required to scan a given amount of memory.

index.
To calculate the threshold or number of entries in the content index, we use the

total number of pages in the system and divide it with the number of scans we wish
to conduct (totalpages

scans = entries). As we need to fill the content index x times with
x scans we split the SFH’s value space into x intervals.

To find a threshold that we deem is acceptable, we have looked at the size of the
content index relative to the number of scans required to search SFH’s value space,
which can be seen in Table 6.1. The values in the table are calculated relative to the
largest amount of memory that we can support at the moment, which on the x86
architecture is 4 GB without Physical Address Extension (PAE) support.

From these calculations we choose to say that five scans are acceptable, which
gives us 230.687 entries totaling 1.7 MB. This amount of memory is statically allo-
cated at boot time, unless the total number of pages can fit into these entries. If
this is the case, then we only allocate the amount of space needed for the pages
and thereby keep the memory usage to a minimum. Also as the number of entries
is fixed, the number of scans are reduced on a machine with less than 4 GB. For
instance on a 2 GB machine, the number of scans will only be 2.5, which we round
up to three. In Table 6.2 we list the different number of scans required. As can be
seen, as soon as there is more than approximately 800 MB available, more than one
scan is needed.

It should be noted that this solution is based on the assumption that the SFH
functions is uniformly distributed, which we have tested to some extent in [33]. If the
hash function used to hash the pages is not uniformly distributed then the content
index will overflow, because this calculation is based on the assumption that the
amount of hash values in each interval can fit into the content index.

It should be noted that it would be possible to reduce the size of the content
index further, by only storing the MFN instead of the machine address. The MFN

66

only spans 22 bits (on a 4 GB machine of course) compared to the 32 bits that
the machine address takes up. This means that we could reduce each entry in the
content index by 10 bits, which is a 15.6% reduction.

6.8 Summary

This chapter explained how our implementation was realized. We started with a
quick status of the implementation. Here we explained that the implementation
is based on Potemkin’s Copy-on-Write code. Furthermore the transparent design is
fully implemented, while the paravirtualized design is only partly implemented. Then
we gave a high-level description of the implementation, about the little subtleties that
are taken into account during the page sharing process.

Having covered the implementation from an overall point of view, we moved onto
describing selected details. First we started with a description of how we ran into
trouble when mapping pages into the Xen specific part of any virtual address space.
Then we showed the most important code segments of how sharing and tearing
down Copy-on-Write shared pages is done. Then we explained how we can use
Xen bookkeeping data structures to avoid scanning pages that we deem unfeasible
to share because they have a high probability of being changed subsequently after
sharing them. Finally we explained how we split the hash value space of our selected
hash function into intervals so that we can reduce the size of the hash table needed
to store the hash values and machine addresses.

With a working implementation we could finally start experimenting with mem-
ory sharing, as we will present in the next chapter.

67

Chapter 7

Sharing Evaluation

In this chapter and the following we carry out a number of experiments. These can be
categorized into the following: Sharing experiments and performance experiments.
The first set of experiments evaluate how much there is to be shared on a number
of workloads. The second set of results examine the overhead in the implementa-
tion. Specifically the experiments and results that will be presented in the following
sections are as follows:

Best and Worst Case Experiments: Two simple experiments to see how much
can be reclaimed under almost optimal and worst conditions.

Synthetic Workload Sharing Experiments: Unfortunately we do not have ac-
cess to real-world workloads, so in this experiment we construct a number of
workloads that are intended to emulate real workloads. Under these circum-
stances we measure how much memory can be shared in a number of different
configurations.

Phone Booth Experiment: To satisfy the inner children, we perform an experi-
ment to see how much we can overcommit the system with.

Performance Evaluation: In order to determine how well the implementation per-
forms, we conduct a number of experiments. The main purpose of this exper-
iment is to determine how expensive using Shadow Page Tables (SPTs) are
compared to the normal Xen paravirtualized approach. When this has been
determined we compare our performance with that of Xen running with SPTs.

Micro Benchmarks: To determine which parts of the implementation has the
highest overheads, we conduct a number of micro benchmarks.

Besides explaining the results of the experiments, we also evaluate 1) whether it
is feasible to share zero pages, 2) how much using the same binaries affects the share
rate and 3) how much the allocation of memory to the Virtual Machine (VM) affects
the sharing rate.

69

7.1 Benchmarks

Before presenting the experiments, we start by introducing the tools and benchmarks
used for the experiments:

Kernel Build Time: A simple test where we measure the time spent on compiling
the Linux 2.6.16 kernel. This is not really an industry standard test, but it
is guaranteed to generate a large workload as well as demand for memory.
This workload should exercise the potential shares thoroughly, thus ensuring
variation in the pages. Apart from the following benchmarks this is the only
benchmark where high numbers signify low throughput, thus low times are
better.

SPECweb99: The SPECweb99 benchmark[18] is designed to exercise a web server.
The workload at the server is a mixture of different requests, where 30% are
dynamic, 16% are static and 0.5% are due to execution of CGI scripts, thus
exercising both network interface as well as the processor. Given the example
of UnixShell# in Chapter 2 on page 11 it should be interesting to examine how
feasible it is to share memory in such a setting. In the experiments we used
the Apache web server version 2.0.55.

OSDB: The Open Source Database Benchmark[52] exercises a database system of
choice. For these experiments we have chosen the MySQL[2] 5.0.21 database,
as this combined with the Apache web server appears to be a frequent combi-
nation. We used version 0.21 of the benchmark. OSDB executes two different
types of tests which both are multi-user tests: 1) Information Retrieval (IR)
and 2) On-line Transaction Processing (OLTP) tests.

dbench: The dbench benchmark[54] emulates the workload of a number of network
clients (we have tested with 4 clients) by generating a large workload consist-
ing of disk IO operations. More specifically it emulates the behavior of the
NetBench benchmark, which is used to evaluate file servers such as Samba
and WindowsNT [54]. Because of its intensive number of IO operations, the
benchmarks generate a significant workload for the processor as well as the
page cache. In the experiments version 3.04 was used.

AIM: AIM Independent Resource Benchmark exercises the different parts of the
Unix system. The benchmark consist of three subsystems: I/O transfers, func-
tion calls and Unix system calls. It measures the throughput of the different
subsystems over a given time. We have chosen to run each benchmark for 60
seconds. In the tests the version used is aim-suite9. We note that the bench-
mark is run from user space, so the numbers often vary due to the workloads
of the machine. Therefore the numbers produced by this benchmark should be
taken lightly and with some considerations.

MWG: Medium Workload Generator is a script written by us. It exercises a number
of common open source tools. Specifically it decompresses and compiles a
number of open source packages. After one package has been compiled there is
a predefined waiting period, so we ensure a medium workload. The compiles,

70

performed by gcc, are a number of packages packed with either the gzip or
bzip2 applications. The test is as such not designed to make a real workload,
it is just a quick mock up to generate a moderate workload.

TioBench: This benchmark is designed to benchmark a file-system by a mix of
random and sequential read/write operations. Tiobench is especially designed
to test I/O performance on a file system by using multiple threads. [35]

Stress: This tool imposes a configurable amount of I/O, CPU and memory stress
on the Operating System (OS). Stress is not designed to be a benchmarking
tool, it has been written to expose massive workloads to a system and thus
expose weak points and bugs. [59]

Crafty: Crafty[31] is a chess engine with high demands for processing power. Al-
though the memory footprint is minimal, the application happily spends any
processor cycles it can get.

Freebench: This benchmark exercises many parts of the system with processor
and memory intensive operations. It is split into two main groups: Integer and
floating point operations. [47]

Having introduced the overall structure of the evaluation and the benchmarks
used, we now proceed with presenting our results and the actual experiments.

This first part of the evaluation tries to answer the following questions:

- How much memory can be shared under nearly optimal conditions?

- Is it feasible to share zero pages?

- How much can be shared between different distributions of Linux or even other
OSes?

- How much memory can be shared under the worst conditions?

- If we estimate what a real workload looks like, then how much can be shared?

- Can Xen do overcommitment?

- How much impact does the memory allocation of each VM affect the overall
share rate?

7.2 Best Case Experiments

In this section we explore how much memory can be shared under good conditions.
The experiments were carried out on a 2.6 GHz P4 Northwood with hyperthread-

ing, but hyperthreading was disabled. The machine had 2 GB of memory and besides
the VMs reported in the individual tests, there was the privileged VM with an al-
location of 64 MB. This was idle and not allowed to participate in the sharing. All
VMs in these experiments ran Debian Sarge on lvm partitions that were originally
identical.

71

We note that the experiments in this first section should not be considered the
general case, as the experiments were conducted on artificially created workloads.
These workloads seek to maximize the number of pages we can reclaim.

The setup used in the experiments is as follows: A number of VMs were started
incrementally. Right before starting a machine we collected the number of currently
shared, reclaimed and zeroed pages for later use.

7.2.1 Idle Virtual Machines

The first experiment consists of 30 idle VMs with a memory allocation of 64 MB.
The VMs are started with a three minute interval, thus ensuring that we have plenty
of time to reclaim pages before the next one is started.

The result is presented in Figure 7.1 on the facing page. The top graph shows
the amounts of shared, reclaimed and zero pages in absolute numbers. The bottom
graph shows the shared and reclaimed pages as a percentage of the currently running
VM’s initial memory allocation. From the figure we can see that approximately 80%
of each VM’s memory were shared and that approximately 70% of these are due
to zero pages. It should be noted that this amount of reclaimed pages are highly
unusual on other than idle workloads as we shall see in the following experiments.

7.2.2 Virtual Machines running Kernel Compiles

The second experiment examines the sharing potentials under a non-idle workload.
We execute the same tasks on every VM, namely the compilation of the 2.6.16 Linux
kernel. There was a delay of 30 minutes between starting each VM in this experiment
to ensure that one compilation was finished before starting another. This ensures
that data left in memory should be almost identical after the compilation on most
VMs and that there were plenty of time to ensure that most shares were found and
set up.

The results are presented in Figure 7.2 on page 74, where we notice that most of
the zero pages have been used for the compilation process. Furthermore the sharing
percentage has significantly decreased compared to the idle experiment, but is still
good. The set of shared pages now mostly reflect the pages used for the compilation
process instead of zero pages. Worth noticing is that the difference between shared
pages and reclaimed pages have increased significantly. This difference reflects the
number of shared copies. Before doing sharing, there are a number of pages that are
identical. When sharing is created a number of pages becomes superfluous, thus they
are reclaimed. Some of the pages must however remain in memory to serve as shared
pages for the domains. In our implementation these are all the pages that are owned
by the share domain. We refer to these pages left in memory as shared copies. In
the idle VM experiment above, the number of shared copies was low, because most
of the shares were zero pages that were removed by pointing them to a single page
in memory.

72

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 5 10 15 20 25 30

M
em

or
y

(P
ag

es
)

Number of VMs

VMs Mem Total
Shared

Reclaimed
Zero Pages

(a) Absolute

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30

%
 V

M
 M

em
or

y

Number of VMs

Shared
Reclaimed

Shared - Reclaimed

(b) Aggregate

Figure 7.1: Absolute and aggregate graphs for 30 idle VMs. Due to zero pages the
sharing percentage is very high.

73

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 5 10 15 20 25

M
em

or
y

(P
ag

es
)

Number of VMs

VMs Mem Total
Shared

Reclaimed
Zero Pages

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25

%
 V

M
 M

em
or

y

Number of VMs

Shared
Reclaimed

Shared - Reclaimed

Figure 7.2: Absolute and aggregate graphs for 25 concurrent VMs, each having
performed one kernel compile. The share percentage is high, while there is a very
low amount of zero pages.

7.3 Feasibility of Sharing Zero Pages

When Xen boots up, one of the things done during the process is to scrub all unused
pages, i.e. fill them with zeros. It is optional to scrub pages when starting a VM.
If a VM is started without scrubbing the pages that it allocates, then potentially
the VM has the possibility to examine the contents of the pages and thus pick up
leaked data from a previous run VM. On the other hand scrubbing every page is an
expensive operation, so there is a trade-off.

Anyways, there is a good probability that a high number of pages within a newly
booted VM are zeroed, either due to the initial Xen boot up scrubbing or due to
scrubbing when starting the VM. We could easily share these pages, thus freeing a
large number of pages. Our experiences however tell us that most free pages within
a VM are quickly used when the VM becomes busy. To examine just how quickly,
we carried out an experiment with a single VM first sharing all its zero pages and
then starting a kernel compile. The result is presented in Figure 7.3 on the facing
page. As can be seen all zero pages are used within approximately 70 seconds. This
is consistent with the results in Figure 7.2, where we saw that nearly all the zero
pages were consumed at the end of the kernel compiles.

Our main concern about sharing zero pages is that as soon as there is a workload,
then the pages are rapidly consumed. The tasks of sharing all the zero pages, just
to tear them down again is not only superfluous, it is even a performance concern.
It is a concern because a write operation to a shared read-only page will trigger the
tear down code, which is an expensive sequence of actions that include at least a
page fault and page copy as well as updating the corresponding Shadow Page Table
(SPT). Furthermore this will happen in time critical code (as opposed to the code
executed while in the idle loop).

To investigate whether this problem outlined is only a theoretical overhead or if
it really does make a different, we timed a number of kernel compiles on a 700 MHz
AMD Athlon machine running our implementation. Ten runs were made where we
share zero pages and correspondingly without sharing zero pages. The results of this
experiment is presented in Table 7.1 on the facing page.

On average the kernel compiles done while sharing zero pages were consistently
slower than the compiles without sharing zero pages. So from this empirical data we

74

 0

 2000

 4000

 6000

 8000

 10000

 12000

 50 100 150 200 250 300 350 400
M

em
or

y(
P

ag
es

)
Time (Seconds)

Zero Pages

Figure 7.3: Zero page consumption on an 700 MHz AMD Athlon machine. After
roughly 175 seconds all zero pages have been shared. After 220 seconds we activate
a kernel compile and consequently the number of zero pages drop rapidly. After
290 seconds most of the zero pages have been used, so most of the zero pages are
consumed within 70 seconds.

M
ea

n

St
an

da
rd

de
vi

at
io

n

Sk
ew

ne
ss

K
ur

to
si

s

M
in

im
um

M
ax

im
um

Sa
m

pl
e

si
ze

Sharing Zero Pages 1565.46 12.11 -0.25 1.83 1546.46 1580.446 10
Filtering Zero Pages 1515.33 6.50 0.859 2.857 1506.61 1528.69 10

Table 7.1: Statistical analysis of time spent (seconds) on a number of kernel compiles.
As can be seen, on average it takes 50 seconds more to compile the kernel when
sharing zero pages compared to when not sharing zero pages.

can conclude that our hypothesis is real and that the problem outlined is a concern.
Sharing zero pages poses a dilemma, because on the one hand there are large

amounts of pages that can be shared, but on the other hand tearing them down poses
an overhead. When the VM containing a lot of zero pages is idle (and is expected
to stay that way) then the pages may just as well be reclaimed, thus freeing pages
to dynamically reassign or distribute to more busy VMs. On the other hand if the
VM is expected to have a decent workload, then the best solution is not to share the
zero pages.

So in order to answer our question as to whether sharing zero pages is feasible,
the answer must be that unless the VM containing the zero pages is idle, then it is
not feasible. Therefore we disregard zero pages by filtering them out in the rest of
the experiments unless explicitly stated else.

7.4 Impact of using Different Binaries

Before moving on we are a bit curious as to how much sharing is obtained by using
the same Linux distribution for the experiments. The reasoning behind this question
is that different distributions have different binaries. Using different binaries should

75

Distributions VM nr. M
ea

n

St
an

da
rd

de
vi

at
io

n

Sk
ew

ne
ss

K
ur

to
si

s

M
in

im
um

M
ax

im
um

Sa
m

pl
e

si
ze

Only Gentoo
VM 1 11275.2 735.87 -0.31 1.40 10352 12064 5
VM 2 11264.0 729.19 -0.30 1.60 10296 12088 5

Only Debian
VM 1 10332.0 150.60 -0.47 1.95 10112 10500 5
VM 2 10362.4 151.88 -0.96 2.59 10112 10504 5

One of each
VM 1 3490.4 83.07 -0.95 2.33 3356 3556 5
VM 2 3605.6 168.80 -0.076 1.46 3400 3800 5

Table 7.2: Reclaimed memory (in KB) from VMs running combinations of homoge-
neous and heterogeneous distributions.

cause the shares that are due to shared application code to be eliminated.
In order to answer this we ran three different setups: 1) Two VMs running

Gentoo, 2) two VMs running Debian and 3) one VM with Gentoo and one with
Debian. The results are presented in Table 7.2.

As can be seen in the table, as long as we are running VMs with homogeneous
distributions, then the number of reclaimed pages is always higher. In fact one could
be surprised that two distributions running their own version of the kernel, all bina-
ries compiled by their own version of gcc and with different versions of services could
have anything to share. First of all it should be mentioned that in this experiment all
the VMs ran the domU kernel provided by Xen, so this should be shareable no mat-
ter what. This takes up 2.6 MB uncompressed. As only 3.5 MB is shared between
VMs running heterogeneous distributions, this leaves a remainder of approximately
1 MB, which may possibly contain kernel structures, page cache and read-only data
pages from services.

As for our expectations for sharing pages between different OSes we have not
investigated this further. We do however deem that the probability of sharing any-
thing besides zero pages between different OSes is low. Mainly because there is so
little to share between different distributions of the same OS. Further work could
explore this question.

7.5 Worst Case Experiment

While a workload with many VMs running the same applications is near ideal con-
ditions for sharing, it is interesting to explore the opposite scenario. Thus in this
section we examine what we consider to be one of the worst cases. The worst case
scenario is one where all the VMs are running different applications within different
operating systems, where the applications have a high demand for memory and the
contents of the memory changes rapidly.

76

Figure 7.4 shows the results of incrementally starting ten VMs that all run dif-
ferent benchmarks. Each benchmark is allowed to run for five minutes after the VM
has been started, after that it is terminated. The benchmarks run in the different
VMs are: Crafty, OSDB, SPECweb99, stress, tiobench, freebench, dbench, AIM,
MWG and kernel build.

We did however deem that using ten different OSes or even ten different distri-
butions was not feasible to set up. Furthermore we expect that people interested
in sharing memory would use the same distributions to ensure as much sharing as
possible. Therefore we also used Debian for this experiment and note that this only
is a nearly the worst case.

Using different distributions would presumably lower the sharing rates, as shares
due to the same applications being run are more unlikely to be found. Again using
different kernels/OSes would probably remove the shares that are caused by sharing
the same kernel.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 1 2 3 4 5 6 7 8 9 10

M
em

or
y(

P
ag

es
)

Number of VMs

VMs Mem Total
Shared

Reclaimed

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10

%
 V

M
 M

em
or

y

Number of VMs

Shared
Reclaimed

Shared - Reclaimed

Figure 7.4: Absolute and aggregate graphs showing the results of the worst case
experiment. The VMs (64 MB memory) are all running different applications, most
with a very high processor load.

As can be seen from the graphs, the reclaim rate is somewhere between 6-10%.
6% of a VM running with 64 MB is roughly 3.6 MB, which seems to be consistent
with the results from the previous section.

7.6 Synthetic Workload Experiments

Having examined the sharing potential under the best and the worst conditions, we
now move onto some more interesting workloads. While the kernel compilation ex-
periment was interesting as an example of sharing potential under similar conditions,
we would much rather investigate how sharing behaves under real world workloads.
As we do not have access to such workloads all we can do is to try to emulate one.
So we do this by examining a number of different workloads in this section.

7.6.1 Virtual Machines running the Medium Workload Generator

The first experiments consists of a number of VMs with an allocation of 64 MB
memory, running our MWG script. The VMs randomly uncompress and compiles

77

different open source packages, so shares due to the page caches should be coinciden-
tal. Most of the tools (bzip2, gzip, gcc, ld and make) used to compile the packages
are however the same, so a minimum of sharing could be expected due to this.

Figure 7.5 shows the results of the experiments. Unlike the previous experi-
ments this experiment was over a number of unrelated runs. The sharing numbers
are somewhat more diverse and dependent on which packages were compiled in a
particular run.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 5 10 15 20 25

M
em

or
y

(P
ag

es
)

Number of VMs

VMs Mem Total
Shared

Reclaimed
Zero Pages

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25

%
 V

M
 M

em
or

y

Number of VMs

Shared
Reclaimed

Shared - Reclaimed

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 5 10 15 20 25

M
em

or
y

(P
ag

es
)

Number of VMs

VMs Mem Total
Shared

Reclaimed
Zero Pages

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25

%
 V

M
 M

em
or

y

Number of VMs

Shared
Reclaimed

Shared - Reclaimed

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 5 10 15 20 25

M
em

or
y

(P
ag

es
)

Number of VMs

VMs Mem Total
Shared

Reclaimed
Zero Pages

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25

%
 V

M
 M

em
or

y

Number of VMs

Shared
Reclaimed

Shared - Reclaimed

Figure 7.5: Absolute and aggregate graphs from three runs. Each represents a num-
ber of concurrently running VMs (64 MB memory) executing the MWG workload
emulating script. It is interesting to see that regardless of the individual runs, the
shares seem to climb up to roughly 100.000 reclaimed pages.

As can be seen from the figures, the number of shares are much more dependent
on the particular workload during a run. We note that a share percentage ranging
between 20-40% must be said to be a good percentage.

78

7.6.2 Virtual Machines running Mixed Workloads

Instead of looking at incrementally started VMs, we now move onto looking at how
workloads behave over time. So the experiments in this section starts eight VMs
concurrently, then wait five minutes and then start the individual benchmarks. Each
VM run in the experiment had a memory allocation of 192 MB, amounting to a total
of 1536 MB for the eight VMs run.

The individual setups for the eight VMs in the tests were: 1) OSDB, 2) SPECweb99,
3) MWG and finally a 4) mixed setup with VMs running different benchmarks.
Specifically the benchmarks used in the latter setup were: SPECweb99, kernel com-
pile, dbench, freebench, AIM, stress and one idle VM. We note that distinct datasets
were generated for both OSDB and SPECweb99 for this experiment.

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60

%
 V

M
 M

em
or

y

Time (Minutes)

OSDB
SPECweb99

MWG
MWG 2

Mixed

Figure 7.6: Reclaimed pages from eight VMs (192 MB memory each) under different
workloads. The number of reclaimed pages is minimal on the SPECweb99 and Mixed
workloads, while the other workloads find up to as much as 12%.

The results of the experiments are presented in Figure 7.6. It should be noted
that the percentages are not directly comparable to those of the previous experiments
because the VM memory size has changed.

Surprisingly the figure shows that the shares in the SPECweb99 experiment are
rather low. Based on the results in the previous sections, a good guess would be
that after the VMs are booted up, the applications and kernel binaries are shared
between the VMs. We would have expected that there would be some sharing due
to the execution of the benchmark. This however seems to be minimal.

As for the OSDB experiment, it was run on the same disk images as the SPECweb99
experiment. So this explains the common starting point in the shares. Contrary to
the SPECweb99 test, there is actually found something to share during the bench-
mark.

79

The MWG script experiment ran as expected. In the beginning the sharing rates
are low because the probability of the VMs are compiling the same packages is low.
After some time the VMs encounter the same packages and because the VMs have
a quite large memory allocation, the most recent compilations are allowed to stay
in memory. Therefore it is no surprise that after roughly 25 minutes, the number of
reclaimed page rises drastically. The second run of the experiment produced similar
results.

Finally the mixed application experiment, much like the worst case experiment
above, only finds a minimum of sharing. We ran this once more and saw roughly
the same numbers.

The workloads with the best results were able to share up to 12%, which is
roughly 180 MB. As can be seen in the figure, the percentage of shares is highly
dependent on the workloads and the memory allocation of each VM. Furthermore it
seems probable that if the VMs were allowed to run for longer periods of time, then
the number of shares would have been larger as the page caches got filled. It seems
evident that the more similar the workloads on the involved VMs are, the more we
find to share.

This concludes our experiments with synthetic workloads.

7.7 Overcommitment

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 0 10 20 30 40 50 60

M
em

or
y

(P
ag

es
)

Number of VMs

VMs Mem Total
Shared

Reclaimed
Zero Pages

Machine Limit

Figure 7.7: Overcommitment on a machine with 2 GB of memory. When 60 VMs
are reached then the system is overcommitted by approximately 29 GB.

In this section we explore whether Xen can do overcommitment. Figure 7.7
shows up to 60 VMs running concurrently, each with a memory allocation of 512
MB. The VMs are idle, so a very large percentage of the pages are zero pages. The

80

horizontal line in the bottom of the graph indicates the memory limit of the physical
machine, which is exceeded after starting only four machines. After that point we
incrementally start 56 additional VMs, thus exceeding the machines memory limit
by approximately 29 GB. If we had pursued the limit for concurrent machines in
Xen (approximately 116 due to the limited size of the Xen heap[57, p. 11]) further,
this may easily be doubled. Furthermore had we used 1.5 GB instead of 512 MB for
each VM this could theoretically have overcommitted the machine by approximately
172 GB.

While the experiment has little practical use, it illustrates one important point.
By sharing zero pages on idle machines there can be reclaimed large amounts of
pages, but as soon as the VMs do any work there is a large probability that the VMs
will need more private copies than is available. We note that the experiment could
easily be done by allocating the same amount of pages and ballooning the pages out
instead.

7.8 Impact of the Memory Allocation of Virtual Ma-
chines

To examine how the memory allocation of the VMs affect the sharing rate we carried
out the following experiment: Eight VMs were started concurrently, each running
a MySQL and Apache server. After ten minutes the SPECweb99 benchmark was
started (one connection per VM). This was executed for the following VM memory
allocations: 64, 128 and 192 MB.

The results of the experiment are presented in Figure 7.8 on the following page.
As can be seen from the figure, the 64 MB VM has a slightly lower share rate at
the beginning of the experiment. As the benchmark starts, the VMs are forced to
write to the shared pages and thus reuse them. The 128 MB VM on the other hand
had sufficient memory free to avoid writing to the shared pages, so the shares are
preserved in that experiment. There was no significant difference between the 128
and 192 MB VMs, so we omit the last graph.

In order to examine this scenario more thoroughly we carried out another set of
experiments. Instead of using SPECweb99, we turned to a scenario we knew would
result in the VMs exercising their page caches and thus hopefully pick up a larger
amount of shares than in the first experiment in this section.

This next set of experiments ran four VMs with memory allocations ranging from
64 MB to 448 MB. These VMs were subjected to a script that chose a package ran-
domly from Gentoo’s package system1 and compiled this (including dependencies).
Once a compilation was done the VMs had a five minute break. The results of the
experiments are presented in Figure 7.9 on page 83. We ensured that the different
runs started from the same starting point, e.g. the run with 64 MB used disk images
that were identical to those running with 128 MB etc.

As can be seen from the figure there seems to be a tendency, where the number
of reclaimed pages rises with the amount of available memory. To better illustrate
this point we provide Figure 7.10 on page 84, which shows the peaks of the graphs
for each memory allocation size.

1The Gentoo distribution can be found at www.gentoo.org.

81

www.gentoo.org

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 10 20 30 40 50 60 70 80 90

M
em

or
y

(P
ag

es
)

Time(minutes)

Reclaimed
CoW Breaks

Reclaimed - Breaks

(a) VM with 64 MB memory

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 10 20 30 40 50 60 70 80 90

M
em

or
y

(P
ag

es
)

Time(minutes)

Reclaimed
CoW Breaks

Reclaimed - Breaks

(b) VM with 128 MB memory

Figure 7.8: Aggregated reclaimed and Copy-on-Write (CoW) breaked pages for eight
VMs running the SpecWEB99 benchmark. The vertical dotted lines indicate the
beginning and end of the benchmark.

82

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 20 40 60 80 100 120 140 160 180

M
em

or
y

(P
ag

es
)

Time(minutes)

Reclaimed
CoW Breaks

Reclaimed - Breaks

(a) 64 MB

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 50 100 150 200 250 300

M
em

or
y

(P
ag

es
)

Time(minutes)

Reclaimed
CoW Breaks

Reclaimed - Breaks

(b) 128 MB

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 50 100 150 200 250

M
em

or
y

(P
ag

es
)

Time(minutes)

Reclaimed
CoW Breaks

Reclaimed - Breaks

(c) 192 MB

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 50 100 150 200 250 300

M
em

or
y

(P
ag

es
)

Time(minutes)

Reclaimed
CoW Breaks

Reclaimed - Breaks

(d) 256 MB

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 50 100 150 200 250 300 350 400

M
em

or
y

(P
ag

es
)

Time(minutes)

Reclaimed
CoW Breaks

Reclaimed - Breaks

(e) 320 MB

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 50 100 150 200 250

M
em

or
y

(P
ag

es
)

Time(minutes)

Reclaimed
CoW Breaks

Reclaimed - Breaks

(f) 384 MB

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 50 100 150 200 250

M
em

or
y

(P
ag

es
)

Time(minutes)

Reclaimed
CoW Breaks

Reclaimed - Breaks

(g) 448 MB

Figure 7.9: Four VMs with different memory allocation sizes subjected to randomly
chosen compiles using Gentoo’s Portage package system.

83

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

64 128 192 256 320 384 448

M
em

or
y

(P
ag

es
)

VM Memory Allocation (MB)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

64 128 192 256 320 384 448

V
M

 M
em

or
y

(%
)

VM Memory Allocation (MB)

Figure 7.10: Maximum number of reclaimed pages from each memory allocation in
Figure 7.9 on the preceding page. The graph on the left shows absolute numbers,
while the graph on the right shows the numbers as a percentage of the VMs total
memory.

As can be seen from the absolute graph in the figure, the tendency seems to be
that the number of reclaimed pages rise linearly until the VM size of 384 MB. At this
point it seems to flatten out. If we however turn to the other graph, which shows
the number of reclaimed pages as a percentage of the total number of pages in all
four VMs, then we see that roughly the same percentages are shared on all sizes.

So to answer the question of how the memory allocation of the VMs affect the
overall share rate, then we can conclude that with a workload that uses some of the
same applications, the sharing rate rises linearly with the size of the VMs. If we
however look at the increase in the number of reclaimed pages as a percentage of the
VMs memory size, then it is roughly consistent.

7.9 Comparison with Other Approaches

To conclude the experiments about page sharing, we now sum up our own results
and compare them to those of VMware[58, p. 6-7] and Potemkin[57, p. 11].

We start with VMware’s best case results. In their experiment they ran up to ten
VMs with 40 MB memory, which were subjected to the SPEC95 benchmark. This
ran for 30 minutes on all VMs, where after the number of shared and reclaimed pages
were noted. The SPEC95 benchmark is a mix of processor intensive applications that
are executed in the same order. Therefore it should leave the VMs in roughly the
same state.

Our kernel compile experiments in Section 7.2.2 on page 72 should be roughly
equivalent to the VMware setup. Both the kernel compile and the SPEC95 bench-
mark are processor intensive and leave the VMs in roughly the same states. Therefore
their number of shared and reclaimed pages should be comparable with our setup.
With ten VMs they were able to reclaim 55% of the VMs pages. With our setup
we were able to reclaim 50% of the pages, so not only does VMware’s results sound
credible; we were actually able to recreate them rather precisely. Finally it perhaps is
worth noticing that they used 40 MB VMs where we used 64 MB VMs. This means
that the OS binaries for the VMs account for a larger percentage of the shares in
the VMware setup and may very well account for the last 5% difference.

84

As for their real world workloads we were of course not able to reproduce these in
an equivalent manner. Therefore we used synthetic workloads consisting of different
benchmarks. VMware reported three setups: One Windows NT and two Linux. As
we are not able to run Windows on Xen (at least not without hardware virtualization
chips), we could not investigate the first result. We will however discuss the two
Linux results.

The first setup consisted of nine VMs with memory allocations ranging between
64 and 768 MB. Their total allocation was 1846 MB. The applications run on the
VMs were a mix of web and mail servers. In this setup they were able to reclaim
345 MB of which 70 MB were due to zero pages. With zero pages this constitutes
18.7% and 15% without zero pages.

The second setup consisted of five VMs with memory allocations ranging between
32 and 512 MB, with a total of 1658 MB. The servers ran applications such as web
proxy, mail server and ssh. In this setup they were able to reclaim 120 MB of which
25 MB were due to zero pages. That amounts to 7.2% with zero pages and 5.7%
without.

Our experiments in Section 7.6.1 and 7.6.2 on page 79 match these numbers, but
also show potential for lower and higher shares based on the specific workload. The
synthetic workloads seem to indicate that VMware’s real world results are realistic,
but the nature of our experiments predetermines that they remain inconclusive. The
only way to fully determine it is to subject our implementation to a real workload
with the same applications in the same environment.

Finally we present a simple little experiment carried out to compare content-
based page sharing with forking in Potemkin. In the article they reported a setup
where a 128 MB VM was booted. This was then suspended and subsequently 116
VMs were cloned from the initial VM. The clones took up 98 MB together, which
roughly means that each cloned VM took up only 0.85 MB.

The first part of our experiment started one VM with 64 MB of memory and
then another VM was cloned from this. Initially the child VM took up only 1064
KB, which matches Potemkin’s number rather well. We tried to replicate this using
content-based page sharing, we replicated this using two 64 MB VMs. The VMs
were left idle and allowed to share zero pages. This way we were able to reduce the
memory footprint of the VM to 4416 KB.

To return to our initial expectation about content-based page sharing being able
to reclaim more pages than forking in Section 3.6 on page 22, we can actually con-
clude that we were wrong. The forking solution is able to keep the initial footprint
smaller. We guess that the difference lies either in the pages that we filter out (as
explained in Section 6.6 on page 62) or the nondeterminism involved in booting
two different VMs compared to booting one VM and then forking it. Potentially
such things as the OS random pool and other kernel structures that are dynamically
changed during the boot process might account for the difference in the number of
reclaimed pages.

Subsequently we wondered how much a workload would change these results.
Therefore we started a kernel compile in both the cloned VM and the one replicating
a cloned VM. After the compilations were done the memory footprint of the forked
VM was 57572 KB in Potemkin and 56520 KB using content-based page sharing.

85

7.10 Chapter Conclusion and Summary

Contrary to the previous chapters we use this last section of the chapter to both
summarize and conclude, as the results of the previous sections are best analyzed
together.

In this chapter we performed a number of experiments to examine sharing under
a number of workloads. Specifically we started with a couple of tests intended to
see how much we could reclaim under good conditions. We saw that as long as the
virtual machines are running the same tasks, then sharing up to 50% on 64 MB
virtual machines is no problem. If we on the other hand examined how feasible the
opposite situation were, we found that the amount of shares was reduced to around
6%. This corresponds to only a little more than the uncompressed binary of the Xen
modified Linux kernel, which all the virtual machines were running. Assuming that
most workloads would exhibit values between these two extremes, we carried out a
number of synthetic workloads.

Our Medium Workload Generator script was designed to make a medium work-
load on the virtual machines and ensure that the they, after a period of time, would
encounter the same tasks, only in a random order. Generally this specific workload
resulted in a reclaim percentage of 20-40%. Finally to conclude the series of synthetic
workloads we presented results from a number of different benchmarks. These ran
on 192 MB virtual machines and generally the shares were between 4-12%. Again
we note that the percentages are not directly comparable between virtual machines
of different sizes, because the shares that are due to sharing the kernel (which are
certain to be shared on all workloads) constitutes a lower percentage on virtual
machines with a higher memory allocation.

As for the contents of the pages we can share, we only found indications of what
the pages are typically used for. As explained it seems quite probable that all the
virtual machines in the experiments were able to share the same binary kernel image,
as this was used on all the experiments. The fact that when we tried running two
virtual machines with different Linux distributions, the shares dropped to roughly
the size of the kernel, seems to support this theory. As for the experiments that were
carried out using the same distributions but with different applications, they also
found roughly the same amount of shares. So we can conclude that as long as the
virtual machines are not set up the same way and not running the same applications
with the same binaries, then the probability of sharing anything is low. As for the
experiments carried out when the virtual machines were running similar workloads,
this was, as expected, the cases where the number of shared pages increased quite
a bit. Our conclusions are that the shares under these circumstances are due to
shared application data left in memory by dead processes and the page cache. We
did however not examine this in detail, so this conclusion is only based on indications.

Furthermore we found that sharing zero pages on active workloads only presents
an overhead, but on idle virtual machines it is feasible to share them as a means of
dynamically distributing the memory allocation. This was illustrated by an experi-
ment that succeeded in overcommiting a system with 16 times its actual memory.

86

Chapter 8

Performance Evaluation

In this chapter we will investigate whether there are possible performance penalties
inflicted on Xen by our implementation. We start by examining the overall perfor-
mance of Xen relative to our implementation. Our approach is to use standardized
benchmarks, so we get a feel for how much any overheads affect ordinary user space
applications. We will then dive into the code and perform a series of micro bench-
marks to investigate the actual functions used in the implementation to determine
if there is room for optimizations and improvements.

8.1 Evaluation using Benchmarks

In this section we perform a series of benchmarks to evaluate the overhead of our
implementation. In particular we want to answer the following questions:

- Is there a performance overhead in sharing pages under different conditions
and workloads?

- Is there a performance penalty in using shadow page tables?

Initially we carried out the experiments on one machine, but encountered some
strange results, particularly in the form of larger overheads than those presented in
[5], [19] and [11], so we redid the experiments on another (larger) machine. Our
main concern was that we expected the poor performance on the first machine to be
hardware bound, e.g. in the form of too low processing power.

The first machine is a 700 MHz AMD Athlon with 340 MB of memory and a
single 100 Mbit network interface. The other is a Sun Fire X4100 server with two
2200 MHz dual core AMD Opteron processors and 4 GB of memory with a single
1 Gbit network interface. It should be noted that the experiments carried out in
native Linux on the Sun Fire had 4 GB of memory, while all other experiments
were conducted with only 64 MB of memory. Furthermore all the Virtual Machines
(VMs) ran using disk partitions for the guest Operating Systems (OSes) instead of
using disk images to guarantee that there is no extra overhead in disk access from
inside the VMs. For all test setups there is one VM running plus the privileged VM,
except for the experiments which involves sharing pages. In these setups we run two

87

VMs plus the privileged VM to ensure that some level of sharing were obtained, thus
exercising both the Copy-on-Write (CoW) sharing and breaking mechanisms.

For the experiments we have used five of the tools mentioned in Chapter 7 on
page 69, namely: Kernel build times, OSDB, dbench, SPECweb99 and AIM. The
benchmarks were carried out on a number of different setups: Debian/Ubuntu Linux
(L), Xen1 (X), Xen with Shadow Page Tables (SPTs) (S), Xen with Potemkin2 (P),
our implementation without sharing (D) and our implementation with sharing3 (C).
Out of curiosity we chose to include results for native 2.6.8 Linux kernel in Debian
Sarge and on a 2.6.16 Linux kernel in Ubuntu, so we knew what to expect from a
non-virtualized setup compared to the virtualized setups.

In particular we chose these setups for three purposes: 1) To evaluate the over-
head in using SPTs, 2) to determine possible overheads of the Potemkin framework
and 3) to examine the overheads of our implementation with and without sharing.

The results of the experiments in this section is the mean of three runs and the
complete set of results can be found in Appendix C on page 127. We note that
the results vary significantly in some of the results of the OSDB benchmarks, so
the comparison between results from different setups should be taken lightly. The
results of the experiments are presented in Figure 8.1(a) for the 700 MHz AMD
Athlon machine and for the Sun Fire in Figure 8.1(b) on the next page.

Generally the results deviates from those presented in the before mentioned ar-
ticles: [5], [19] and [11]. [11] reported that they had problems obtaining the same
results as [5] until they got help, so the impact of the setups may be significant. So
we cannot rule out that more attention to the individual setups could have yielded
better performance. Furthermore remember that the native Linux experiments were
conducted with 4 GB of memory on the Sun Fire, which most probably accounts for
the anomalies in the graphs regarding the performance of Linux versus Xen. Finally
we note that the SPECweb99 benchmark run on the 700 MHz AMD machine kept
only one continuous connection, while the Sun Fire machine kept 20.

In an effort to further investigate the anomalies we tried changing the amount
of memory during the kernel build and dbench benchmarks. As it can be seen in
Figure 8.2 on page 90 this has a high impact on the performance scores in the
benchmarks. When the memory size is 128 MB in the dbench benchmark, the Linux
score is almost equal to that of Xen and our implementation. Increasing the memory
allocation, further shows that Xen does not seem to be able to take advantage of the
increase in memory. As for the kernel compiles the difference between ours and the
others seems minimal. Based on these results we attribute the strange results in the
first graph to the VM memory size and perhaps poor setups on our behalves. Finally
we note that determining the real causes of the performance anomalies between
native Linux and Xen, though they may be very interesting, are not central to this
thesis.

As for the performance of our implementation and possible overheads, when we
compare the overall results in Figure 8.1 on the next page, we find that there are
only minor differences between Xen with SPTs and our implementation. In some

1The version used in the experiments is changeset 9883 from Xen’s unstable repository.
2The Potemkin implementation was obtained by patching Xen unstable changeset 9515 with the

Potemkin patch set from April.
3The version used under these experiments were changeset 9785.

88

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

L X S P D C L X S P D C L X S P D C L X S P D C L X S P D C

11
79

.3
8

15
00

.0
0

15
46

.8
9

15
60

.5
0

15
57

.2
8

15
78

.7
0

17
0.

40

10
4.

68

10
0.

41

88
.0

7

85
.6

4 95
.3

8

33
0.

28

15
4.

55

15
2.

20

13
1.

21

13
2.

47

12
8.

45

37
.9

64
5

9.
61

81
0

9.
64

05
7

9.
13

99

9.
50

54
7

9.
71

70
6

38
5.

3

38
3.

1

36
2.

9

35
9.

4

36
0.

0

35
6.

0

Linux build time (sec) OSDB IR (tup/sec) OSDB OLTP (tup/sec) dbench (MB/sec) SPECweb99 (KB/sec)

(a) The performance results for the 700 MHz AMD Athlon machine running Debian.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

L X S P D C L X S P D C L X S P D C L X S P D C L X S P D C

28
8.

30

33
1.

92

37
9.

97 34
7.

21

34
1.

00

33
9.

74

22
10

.4
1

84
3.

59

85
3.

82

75
9.

58

78
2.

82

76
9.

22

14
9.

73

45
.3

9

46
.6

0

42
.7

1

40
.8

5

40
.6

0

61
2.

30

17
7.

06

16
8.

62
6

16
8.

33
6

17
7.

85
4

16
0.

72
7

31
5.

2

31
2.

2

29
6.

5

99
.7

10
0.

1

10
8.

2

Linux build time (sec) OSDB IR (tup/sec) OSDB OLTP (tup/sec) dbench (MB/sec) SPECweb99 (KB/sec)

(b) The performance results for the Sun Fire X4100 server running Ubuntu.

Figure 8.1: Overall performance benchmarks. The results in the graphs is relative
to the performance of Linux (L). Xen (X), Xen with SPTs (S), Potemkin (P), Xen
with memory scans (D) and Xen with CBPS (C). High columns indicates good
performance.

89

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

L X C L X C L X C

32
2.

33
7

31
9.

96
9

31
7.

39
0

72
3.

98
9

37
3.

03
3

36
7.

46
7

69
9.

94
7

37
3.

03
0

36
3.

63
5

128MB 256MB 512MB

(a) dbench

 0

 150

 300

 450

 600

 750

 900

 1050

 1200

 1350

L X C L X C L X C

29
3.

59
6

31
6.

52
9

32
2.

03
0

29
0.

75
2

31
0.

18
5

32
1.

05
3

28
9.

52
5

31
3.

53
0

32
9.

17
0

128MB 256MB 512MB

(b) Kernel build times.

Figure 8.2: Memory allocations impact on benchmarks under Ubuntu Linux (L),
Xen (X) without SPTs and Content-based page sharing (C). The graphs illustrate
the performance results of dbench and kernel builds with a memory allocation of
128-512 MB of memory. These experiments were conducted on the Sun Fire X4100
machine. It should be noticed that in 8.2(b) lower scores is better.

90

700 MHz AMD
Operation XenU XenU SPT Unit/second
exec test 149.65 117.96 Program Loads
fork test 835.27 592.05 Task Creations
shell rtns 1 35.31 27.13 Shell Scripts
shell rtns 2 35.64 26.60 Shell Scripts
shell rtns 3 36.26 27.15 Shell Scripts

Sun Fire X4100
Operation XenU XenU SPT Unit/second
exec test 828.50 565.58 Program Loads
fork test 3554.98 2013.00 Task Creations
shell rtns 1 182.44 134.13 Shell Scripts
shell rtns 2 182.65 135.13 Shell Scripts
shell rtns 3 182.77 134.83 Shell Scripts

Table 8.1: Results from AIM benchmark for XenU with and without Shadow Page
Tables (SPTs). See Table B.2 and Table B.6 on page 123 for the unabridged result
sets.

results we score higher, in some results we score a little lower. In general we can
conclude that at least on an overall level our implementation does not seem to have
any large overheads.

As for whether there is an overhead in using Potemkin as a basis for our imple-
mentation we notice that there is a sudden drop of performance in the SPECweb99
benchmark starting with the run of Potemkin. As Potemkin is still under develop-
ment and it is not yet officially released, we attribute this to an issue that may very
well be resolved in future versions.

We were also interested in how Xen using SPTs performs compared to Xen
without SPTs. As we can see from the results, there seems to be an overhead. To
investigate the matter further, we first turned to the AIM benchmark. A complete
list of results can be found in Appendix B on page 117. In the experiment we found
that there were significant overheads in the exec and fork tests when performed in
the VMs, as presented in Table 8.1.

The overhead of using SPTs lies between 21 − 31% when executing a program
and 29− 43% when forking a program. When AIM runs its exec test it 1) executes
a new shell, 2) waits until it exits and 3) repeats this for the entire duration of the
test. The fork test is done in the same way, but it exits immediately after a fork
operation has been performed.

Finally we found overheads in the AIM tests that starts shell scripts. The tests
simply count how many times a shell script can be executed. The three shell tests
are slightly slower when using SPTs, which should be a direct consequence of the
slower exec test. We remind the reader that the AIM experiments are run from user
space, so the potential error margin may be large. Furthermore as the AIM tests are
rather simple, we wanted to exhibit a more diverse workload to the SPTs.

We choose to use the SPECweb99 benchmark to examine this further. In this
benchmark the total throughput rises with the number of concurrent connections.

91

Connetions 4 8 16 32 64
Shadow L1 141 152 173 196 245
Shadow L2 21 23 27 27 30

Table 8.2: Number of SPTs after 40 minutes during the benchmark in Figure 8.3.
L1 tables are Page Table Entry (PTE) and L2 are Page Global Directory (PGD)
tables.

Therefore as we increase the number of simultaneous connections, we also exercise
the memory more as more data is brought into memory.

The experiment was carried out on a 2.6 GHz P4 Northwood with 2 GB of
memory and the VMs run had 512 MB of memory. We ran an Apache web server
on a VM with a varying number of connections. This is done in two different setups,
one with SPTs and one without. The reader should notice that on this benchmark
run we enabled performance counters, so the results in this experiment cannot be
directly compared to the previous SPECweb99 results. The results of the experiment
is pictured in Figure 8.3.

 0

 50

 100

 150

 200

 250

 300

 350

 400

X S X S X S X S X S

39
8.

8

39
7.

9

39
4.

5

37
2.

1

21
5.

8

39
6.

0

39
0.

0

34
9.

0

17
0.

8

80
.1

4 Connections 8 Connections 16 Connections 32 Connections 64 Connections

Figure 8.3: Benchmark results from experiment on the overhead of Shadow Page
Tables (SPTs). The figure shows the throughput in KB/s for the SPECweb99 bench-
mark with 4-64 continuous connections for Xen (X) and Xen with SPTs (S).

As can be seen from the figure, the throughput of the run with SPTs degrades
extensively compared to the run without SPTs, as the number of connections rise.
It seems that the processor time needed to keep the SPTs up-to-date takes too many
processor cycles and as a consequence the throughput falls.

During the benchmarks we examined how many SPT there were and how large
they were. The results of this is presented in Table 8.2. As can be seen the number

92

of L2 tables (one for each process) does not increase significantly as the throughput
rises. The number of L1 tables (indicating roughly the number of entries used in the
L2 tables) rises significantly more. So this explains why the throughput drops, the
amount of SPTs to keep synchronized simply gets too high.

So to conclude the question of whether there is an overhead in using SPTs, there
is a noticeable overhead in executing/forking processes. Also the performance seems
to degrade as the number of PTE tables increase. This seems logical as there are
more operations required to create and maintain the SPTs.

To conclude the overall benchmark, we found that there are no apparent per-
formance penalties in our implementation, except in the use of SPTs. Though they
are expensive during forks, it should be noted that this is not that common an op-
eration. However on forking intensive workloads the use of SPTs might incur large
performance penalties.

In order to fully examine how expensive the individual operations in our im-
plementation are, we have performed a series of micro benchmarks, which will be
presented in the next section.

8.2 Micro Benchmarks

In this section we investigate our implementation and try to identify any overheads
through a number of micro benchmarks. Therefore we start by regarding the most
frequently used of the basic functions in the implementation. As we uncover expen-
sive operations we narrow in on those operations and examine them in more detail.
Thus in this section we are trying to answer the following questions:

- How expensive are the most commonly used operations in our implementation
?

- Can we optimize anything with this knowledge?

The micro benchmarks are performed by using a high resolution timer, which
measures the number of clock ticks occurred on the processor since it was last reset.
The timer is a 64 bit counter, which means that we will not get in any problems
with overflow, in the small intervals we will measure.[1][p. 403],[9][p. 228]

We have used the timer to measure the number of processor cycles a given func-
tion spends when executed and thereby obtain a measure for the cost of the function.
For each function we collect a large number of readings to avoid statistical deviations.

It should be noted that the number of processor cycles used on a function might
differ quite significantly on different CPUs, since one CPU might be able to execute a
single instruction while another CPU may have to execute a series of instructions to
accomplish the same operation. Hence the results represented in this section might
not give a correct picture of the processor cycles used for an operation on a different
processor than the processor we ran the benchmarks on. Since we in this benchmark
want to compare the different functions in the implementation with each other, this
method fits the purpose.

We note the results in the following sections are results from different runs.
Therefore the number of and size of the SPTs most probably vary and as a con-
sequence only times from the same run can be compared directly. The latter two

93

tables in this section each contain results from a single run. So the numbers within
one of those tables can be compared against the other numbers in that table.

The micro benchmarks are all conducted on the same machine, which is a 700
MHz AMD Athlon Processor with 512 KB cache and 320 MB memory. The front
side bus is running at 100 MHz. For all the experiments there are two VMs running
plus the privileged VM. The non-privileged VMs were configured with 64 and 96 MB
of memory and the privileged VM had 64 MB of memory.

Having covered the method used in the micro benchmarks, we now present the
actual results.

8.2.1 Benchmark of Frequently Used Functions

We start the micro benchmarks by investigating the cost of the more interesting
functions. The results of these benchmarks can be seen in Table 8.3 on the facing
page. The functions in the table are listed in the same order as they are explained
in the following:

SuperFastHash (SFH): This function is called each time a page is hashed. It is
called from the page hashing component, which means that it is only run when
the CPU is idle, hence the performance of this function is not critical for the
systems responsiveness. If it is slow, then it only affects the performance of
the page hashing component.

Copy page: This operation copies the content of one page into another as the name
implies. As it can be read in the design it is used rather often both in the setup
of shared pages and in breaking them down.

Compare pages: This function is used each time we have a pair of pages that
potentially can be shared. It uses the function memcmp, which can be seen just
below compare pages in Table 8.3, where it also can be seen that it accounts for
most of the cycles spent in the compare pages function. The memcmp function
stops comparing two pages, when it finds a difference in them. So the worst
case scenario for this function is when two pages are in fact identical, because
it has to run through the whole page. The table only includes the results where
the pages where bitwise identical, meaning the worst case results.

Zero page check: A simple check of whether a given page is a zero page. This op-
eration is not used for anything other than sanity checks in the implementation.
As it is much faster than the SFH function, there might be an opportunity for
optimization of the identification of zero pages in the page hashing component.
So instead of always hashing any given page, we first check it with a specialized
zero page checking function. Besides being faster than hashing a page, it also
has the advantage of being able to return as soon as it finds a part of the page
that is not zero. This means the check will not use most time when called on
a non zero page, unless the first part of the page contains only unset bits.

(Un)Map domain page: These two functions are generally very fast and they are
used very often, e.g. each time the content of a page is read. The maximum

94

Operation: M
ea

n

St
an

da
rd

de
vi

at
io

n

Sk
ew

ne
ss

K
ur

to
si

s

M
in

im
um

M
ax

im
um

Sa
m

pl
e

si
ze

Super-
FastHash 22000 1626 18.40 470.55 13141 69760 93267
Copy page 9936 1903 0.73 12.25 3982 22789 3063
Compare
page 35955 14791 8.27 80.75 21563 228697 34476
memcmp
(identical) 31379 13799 8.65 86.78 17380 207113 33298
Zero page
check 3087 805 52.19 2779.22 2998 48582 29368
Map
domain page 339 287 51.61 6576.58 197 42687 145524
Unmap
domain page 306 278 102.02 14739.06 197 42687 72762
Alloc dom-
heap page 2575 996 1.27 5.07 895 8182 7886
Break CoW
(copy) 2422795 339927 -0.54 3.36 725921 3300204 15566
Break CoW
(convert) 995 564 2.94 26.28 120 6246 563
Change
mapping 7232671 2872469 -0.73 2.18 251133 11364587 49947

Table 8.3: Statistical analysis of the results from micro benchmarks of the most
frequently used functions in the implementation. Each row in the table were collected
from separate runs.

95

values of this operation are, as explained in the latter part of Section 6.3 on
page 50, presumable due to TLB flushes every 1024 time the function is used.

Allocate from domheap: This function allocates a page from the domain heap
and is called on each CoW break (copy) as well as each time a new shared
page is created. Compared to the other operations it is not expensive, so we
will not dig further into it.

Break CoW (copy): In contrast to the SFH function the break CoW sharing func-
tion is run when the system is working on a task and has tried to write to a
page that is CoW shared. This write operation will result in a write fault on
the shared page and a private copy is created. This operation calls a function
named shadow remove all access, which as we shall see later on, is responsible
for most of the processor cycles used in the break CoW function.

Break CoW (convert): This function is an optimization of the Break CoW (copy)
above. It should be used instead of the above function when the page being
CoW broken has a type count of 1, which indicates that only one VM is using
this shared page. In this case it can safely be converted to a normal page, that
is owned by the one VM that still has a reference to it, instead of making a
private copy of it.

Change mapping: This operation covers the changing of mappings in the Physical-
to-Machine (P2M) and Machine-to-Physical (M2P) tables and the necessary syn-
chronization after these updates. It is called on each setup of a shared page.
As can be seen from the table, it is by far the most expensive operation in
the implementation, but as with the SFH function, it is only called when the
system is idle, so it should not interfere with the responsiveness of the system.

We were a bit surprised that a page comparison is actually more expensive than
a page copy, which in fact is not as expensive as we expected. As our operations
need to map in a given page to read the contents of it, we were relieved that this
operation is as cheap as it is. Finally the two most expensive operations are, as
could be expected, the operations that operate on the SPTs. Because these are
so expensive, the following sections investigate exactly why these functions are so
costly.

8.2.2 Investigation of the Expensive Operations

As we uncovered in the last section the change mapping and break CoW operations
are very expensive compared to the other operations in our implementation. There-
fore we explore the costs of the sub-functions used within these functions. These
are presented in Table 8.4 on the facing page. It should be mentioned that the set

entries operation in the table actually covers two functions in the actual code, both
used for setting entries in a mapping.

guest physmap remove page: This function invalidates the mapping of an old in-
valid Machine Frame Number (MFN) in both the P2M and M2P tables. It primar-
ily uses the free shadow page, set entries and shadow sync and drop references

functions.

96

Operation: M
ea

n

St
an

da
rd

de
vi

at
io

n

Sk
ew

ne
ss

K
ur

to
si

s

M
in

im
um

M
ax

im
um

Sa
m

pl
e

si
ze

Change
mapping 6938934 1577294 0.85 2.79 1438681 11346164 34664
Guest phys-
map remove 2009855 516399 0.70 2.30 355527 3298847 34664
Guest phys-
map add 1695540 379101 0.83 2.90 345185 2823024 34664
Shadow remove
all access 1622055 361458 0.75 2.92 342352 2703164 34664
Put page
and type 1603276 360921 0.71 2.95 347731 2646831 34664

Table 8.4: Statistical analysis of the subfunctions of the change mapping operation.
Unlike the first table, the data in this table originates from the same run, so they
can be compared directly. The four lower rows can be added together to roughly
give the value of the change mapping operation.

guest physmap add page: This function creates the new mappings to a MFN in
both the P2M and M2P tables. It primarily uses the shadow sync and drop references

and set entries functions.

shadow remove all access: This function removes all access to a given MFN. It
does so by traversing all SPTs of a given VM, while replacing all Page Table
(PT) entries that contain the given MFN with an empty entry. This is rather
expensive operations. Exactly how expensive varies depending on the number
and size of the SPTs currently in the domain.

put page and type: This function decrements the reference and type count of a
given page. The function is not really expensive until the situation where it
ends up freeing a page. This happens when the page has a count of one when
the function is called. This means that the page should be freed to the the
Xen domheap. When this happens, a number of things will take place, but
of special interest is that the shadow drop references function is called which
again calls the shadow remove all access function.

We provide a call graph to illustrate the connections between the functions with
the highest costs in Figure 8.4 on the next page. As can be seen they all rely on the
shadow remove all access function. It should however be noted that the call graph
has been simplified by removing uninteresting details.

As can be seen from the table the shadow remove all access function is expensive
and the put page and type ends up being expensive when a page is freed because it
calls the first function. The guest physmap add page and guest physmap remove page

functions do however require some more investigation.

97

shadow
rem

ove
all

access

cs
change

m
apping

shadow
drop

references

guest
physm

ap
add

page
guest

physm
ap

rem
ove

page
free

dom
heap

pages

free
dom

heap
page

put
page

put
page

and
type

share
pages

rm
m

ain
reference

m
anager

idle
loop

shadow
sync

and
drop

references
cow

break
sharing

l1pte
w

rite
fault

Figure 8.4: Simplified call graph showing the functions that call the expensive
shadow remove all access function. The set of functions that we have benchmarked
have a thicker edge in the figure.

98

Operation: M
ea

n

St
an

da
rd

de
vi

at
io

n

Sk
ew

ne
ss

K
ur

to
si

s

M
in

im
um

M
ax

im
um

Sa
m

pl
e

si
ze

Shadow sync
and drop
references 1271309 213864 1.23 3.96 299417 2154620 31019
Free shadow
page 320 184 1.16 5.24 70 1657 31019
Set
entries 1780 876 32.81 1611.48 906 47076 31019

Table 8.5: Statistical analysis of the functions called by the functions being examined.
All the numbers are from the same run. The interesting operation is the first, as
this is the expensive one.

This accounts for the functions in the change mapping operation. As for the
break CoW operation, we also found that the shadow remove all access function
is the single most expensive function called by this operation. As this function is
called, this means that the cost of the break CoW operation is determined by both
the number of SPTs and their sizes.

8.2.3 Further Investigation of the Expensive Operations

The previous section showed that there were some expensive functions that could be
investigated further, namely guest physmap add page and guest physmap remove page.
They are quite similar in the way that they are constructed in terms of the functions
they call. In this section we investigate the costs of these functions and the results
can be seen in Table 8.5. The three interesting functions are as follows:

shadow sync and drop references: If the page given as argument is out of sync,
then it synchronizes the SPTs. Then it drops all references to the page, which is
done by calling the shadow remove all access function. As we saw this function
is rather expensive and is possibly responsible for almost all of the processor
cycles used.

free shadow page: This function as the name suggest frees a shadow page and is
not really expensive compared to the other functions in this section, so we will
not investigate it further.

set entries: This operation includes the following two functions: set p2m entry and
set gpfn from mfn. These two functions update the P2M and M2P mappings. As
it can be seen in the table these updates are not really expensive, but the side
effects of updating them are. This is primarily because we need to call the
shadow sync and drop references function as we explained above.

Most of the processor cycles used in the implementation end up being used in the
shadow remove all access function. This is true for both the time critical parts of

99

the implementation and the not as critical idle loop context. Because this function
is so expensive, further optimization efforts could easily start with this knowledge.

A set of minor possible optimizations were discovered during these micro bench-
marks: 1) We found one unnecessary call to shadow remove all access that can be
removed, since it is done implicitly by another function on the same MFN. 2) There
might be a small performance benefit in having a specialized function for the fil-
tering of zero pages instead of identifying them by their hash value. As explained
in Section 7.3 on page 74, as soon as there is a decent workload all the zero pages
are used, so this optimization presumable is futile when the VMs are busy and even
becomes an overhead. 3) Some of the shadow remove all access calls could probably
be reduced into one call, which takes more than one MFN as argument. Our guess
is that traversing the SPTs is the most expensive part of the operation, so looking
for more than one MFN to replace during each traversing might be more efficient.

8.3 Summary

This chapter examined possible overheads in our implementation. The approach
was first to examine this at an overall level by using common benchmarks to see
how good the performance is at the application level. In particular we applied the
benchmarks to a number of setups, ranging from an unmodified Linux kernel to
our implementation of content-based page sharing within the Potemkin patch set
for Xen. As for our own implementation, we found that as the part of the code
that searches for identical pages is only called when a processor is idle, then this
part should not influence overall performance. Contrary to this was the task of
breaking the sharing, which is time critical. This is dependent on manipulating the
shadow page tables, so might not scale well. We did however find that at least on
the workloads we examined, it did not have a noticeable impact.

As one of our designs uses shadow page tables, we examined how large the over-
head of using shadow page tables was. Generally we found that on most workloads
the penalty is minor, but workloads with frequent forking and large processes might
pay a larger penalty.

Finally we examined our implementation through micro benchmarks and found
that the most expensive functions used were so expensive due to the cost of updating
the shadow page tables.

100

Chapter 9

Conclusion and Future Work

The recently reemerged popularity of virtualization has brought attention to server
consolidation as a means of reducing the costs of running a business grade server
room, while gaining better fault tolerance through isolation. Server consolidation
by using virtual machines as a software abstraction that arbitrates the access to the
actual hardware however often entails an increased amount of redundancy within a
system. This redundancy consists of multiple instances of the same kernels as well as
applications. By using virtualization we get the chance to eliminate the redundancy
in a manner that was not possible without consolidation. This thesis approached
reducing the redundancy in a system by searching for identical pages in memory to
share and found that it is not only feasible, but also possible to implement without
much loss of performance.

In particular we started by examining related work done on sharing memory.
During this search we encountered content-based page sharing in VMware and merge-
mem, flash cloning in Potemkin and an emerging shared page cache in XenFS. While
Potemkin’s flash cloning approach is able to keep the initial memory footprint to a
minimum, as soon as it is subjected to a general non-specialized workload, the mem-
ory footprint will grow and the approach will not be able to identify additional shares.
The content-based page sharing approach on the other hand is able to do this at all
times, but the nondeterminism involved in booting an operating system keeps this
approach from reaching as little a memory footprint as flash cloning. Therefore a
combined approach should form the optimal solution.

For our implementation we chose the content-based page sharing approach, but
chose to make several changes to the design applied by VMware. We suggested
to use a paravirtualized approach and an approach that was transparent to the
guest operating systems. The latter makes use of notoriously expensive shadow page
tables to provide an address space abstraction over the pages used by a given virtual
machine. The first avoids this expense at the cost of having to modify the guest
operating system running inside the virtual machine by use of reverse mapping and
ballooning.

The actual implementation is a set of modifications to the Xen virtual machine
monitor aided by the Copy-on-Write mechanisms implemented within the Potemkin
framework. By using Potemkin as the basis for our implementation and by applying
certain design decisions used in Potemkin, we automatically get compatibility with

101

Potemkin’s flash cloning. This is however not something we have tested thoroughly.
As for the status of the designs, the transparent design is fully implemented, while
the paravirtualized design is only partly implemented.

With a working implementation we were able to examine several interesting
questions about the sharing of memory. First and foremost we wanted to deter-
mine whether it was even feasible to share memory. We found that the amount of
shareable pages is highly dependent on the specific workload, but generally there is
something to share on almost any workload. This is mainly based on an assumption
where we run the same distributions as well as kernels. Our argument is that this
is most likely also the case on real consolidated servers as companies tend to keep
to the same distributions and operating systems to reduce the cost of having to be
familiar with a multitude of different distributions. We do though note that without
this assumption, the amount of pages to share could very well be zero. Furthermore
during this evaluation we also had the opportunity to verify the memory sharing
results presented by VMware and Potemkin. We found that both were credible and
some of our experiments actually came very close to their actual results. Finally we
successfully used the pages we reclaimed to do overcommitment in Xen.

As for the contents of the shareable pages, we found that most likely we always
share the pages that contain the Xen modified kernel binary. Any other shares are
dependent on the individual applications run in the different virtual machines.

We found that page sharing is very feasible in terms of performance, given that
our implementation only uses processor cycles, that would otherwise be wasted,
in the process of finding identical pages. The only parts that are time critical is
the handling of page faults to shared pages. These are however bounded by the
implementation of shadow page tables in Xen. The expenses of the shadow page
tables are mainly the overhead of synchronizing the tables on workloads with many
and/or large processes. To avoid these overheads, we avoid sharing pages that we
deem are likely to be broken down momentarily without doing any good.

As for the general applicability of our implementation in Xen, the answer is
two-fold. The advantages gained by using content-based page sharing cannot alone
justify the use of shadow page tables, as these degrade performance too much. Our
hope is however that a completed implementation of the paravirtualized design can
justify content-based page sharing in Xen, by omitting the overheads. Hardware
supported virtualization technology on the other hand is dependent on shadow page
tables, so using this technology there should only be advantages to gain by using
content-based page sharing as the expenses have already been paid. The benefits of
sharing pages are freeing memory and perhaps even a slight increase in performance
due to locality. Furthermore AMD’s Pacifica chip supports shadow page tables at
the hardware level, so there may not even be any overheads on this architecture.

Finally to conclude the thesis, we return to the goals presented in the first part
of the thesis. These were put shortly to examine existing techniques to do sharing
between virtual machine, implement one of these in an efficient solution and compare
this with existing solutions. We conclude that we succeeded in accomplishing these
goals.

102

9.1 Future Work

Finally we explain interesting research and implementation issues that could be
investigated further.

An in depth analysis of what the shared pages actually contain, could prove
interesting. This has several aspects, first analyzing the uses of shared pages from
a statistical point of view, could very well be interesting to gain a better knowledge
of exactly what the pages are used for. In particular we would like to examine how
large a percentage of the shared pages are due to the page cache. This could be used
to evaluate the feasibility of an interdomain shared cache.

Another interesting subject could be to investigate the scalability of shadow page
tables in depth. As we showed the shadow pages tables are vulnerable to forking
intensive workloads, but we have no indication that these are typical workloads.
Based on the findings, classifications of workloads could be proposed, which deter-
mine what workloads are suitable to be run on shadow page tables and which are
not.

The implementation also leaves a number of issues. As explained one concern
is preparing the implementation for hardware virtualized chip support. Another
is completing the implementation of the paravirtualized design. Furthermore the
implementation could benefit from using a randomized permutation version of the
page hashing algorithms. As of this writing they always start from the same point,
so to ensure that the virtual machines are scanned equally, randomizing the order of
scanning should make it more fair. Finally the implementation should be prepared
for inclusion in the main Xen repository and adapted to the newest changes.

Another topic could be investigating dynamically distribution and reallocation of
free memory dictated by policies to ensure the maximum throughput of the system
as a whole. One approach could be to start the virtual machines with pages mapped
Copy-on-Write to a single zero page. This way we could ensure that the virtual
machines only occupy the pages that they actually need. This of course has the
overheads of breaking the Copy-on-Write sharing, so it may only be feasible on idle
workloads.

Finally making Xen fully capable of handling overcommitment, perhaps by using
the privileged domain to swap pages to disk as a last resource. Another approach
could be to suspend entire virtual machines to disk to free pages for the system.

103

Bibliography

[1] Intel Architecture Software Developer’s Manual Volume 2: Instruction Set Ref-
erence. 1997. Intel Document Order Number: 243191.

[2] MySQL AB. Mysql: The world’s most popular open source database. http:
//www.mysql.com/.

[3] AMD. Amd secure virtual machine architecture reference manual.
http://www.cs.utexas.edu/~hunt/class/2005-fall/cs352/docs-em64t/
AMD/virtualization-33047.pdf.

[4] Kevin Atkinson. Slow memcmp for aligned strings on pentium 3. http://gcc.
gnu.org/ml/gcc/2003-04/msg00166.html.

[5] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. In Proceedings of the ACM Symposium on Operating Systems
Principles, October 2003.

[6] Hollis Blanchard. Xen wiki: Xen terminology. http://wiki.xensource.com/
xenwiki/XenTerminology?highlight=%28terminology%29.

[7] Daniel G. Bobrow, Jerry D. Burchfiel, Daniel L. Murphy, and Raymond S.
Tomlinson. Tenex, a paged time sharing system for the pdp - 10. Commun.
ACM, 15(3):135–143, 1972.

[8] James Bottomley. Improving kernel performance by unmapping the page cache.
In Proceedings of the 2004 Ottawa Linux Symposium, pages 103–111, July 2004.

[9] Daniel Bovet and Marco Cesati. Understanding the Linux Kernel, Third Edition.
O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2005. ISBN 0596005652.

[10] Edouard Bugnion, Scott Devine, and Mendel Rosenblum. Disco: running com-
modity operating systems on scalable multiprocessors. pages 143–156, 1997.
ISBN 0-89791-916-5.

[11] Bryan Clark, Todd Deshane, Eli Dow, Stephen Evanchik, Matthew Finlayson,
Jason Herne, and Jeanna Neefe Matthews. Xen and the art of repeated research.
In USENIX Annual Technical Conference, FREENIX Track, pages 135–144,
2004.

105

http://www.mysql.com/
http://www.mysql.com/
http://www.cs.utexas.edu/~hunt/class/2005-fall/cs352/docs-em64t/AMD/virtualization-33047.pdf
http://www.cs.utexas.edu/~hunt/class/2005-fall/cs352/docs-em64t/AMD/virtualization-33047.pdf
http://gcc.gnu.org/ml/gcc/2003-04/msg00166.html
http://gcc.gnu.org/ml/gcc/2003-04/msg00166.html
http://wiki.xensource.com/xenwiki/XenTerminology?highlight=%28terminology%29
http://wiki.xensource.com/xenwiki/XenTerminology?highlight=%28terminology%29

[12] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul,
Christian Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual
machines. In Proceedings of the 2nd ACM/USENIX Symposium on Networked
Systems Design and Implementation (NSDI), May 2005.

[13] Jonathan Corbet. The object-based reverse-mapping vm. http://lwn.net/
Articles/23732/.

[14] Jonathan Corbet. Reverse mapping anonymous pages - again. http://lwn.
net/Articles/77106/.

[15] Jonathan Corbet. The status of object-based reverse mapping. http://lwn.
net/Articles/85908/.

[16] Jonathan Corbet. Virtual memory ii: the return of objrmap. http://lwn.net/
Articles/75198/.

[17] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms second edition. The MIT Press, 2003. ISBN 0-262-
03293-7.

[18] Standard Performance Evaluation Corporation. Specweb99 benchmark. http:
//www.spec.org/web99.

[19] Keir Fraser, Steven Hand, Rolf Neugebauer, Ian Pratt, Andrew Warfield,
and Mark Williamson. Safe hardware access with the xen virtual machine
monitor. Technical report, 2004. http://www.cl.cam.ac.uk/netos/papers/
2004-oasis-ngio.pdf.

[20] Keir A. Fraser. Xen developers archives: Odd mapping behavior
with map pages to xen. http://lists.xensource.com/archives/html/
xen-devel/2006-03/msg00673.html.

[21] Keir A. Fraser. Xen developers archives: Re: Overcommitting memory (was:
Disable auto-balloon on ia64). http://lists.xensource.com/archives/
html/xen-devel/2006-05/msg01104.html.

[22] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra:
A virtual machine-based platform for trusted computing. In Proceedings of the
19th Symposium on Operating System Principles(SOSP 2003), October 2003.

[23] Robert Philip Goldberg. Architectural principles for virtual computer systems.
PhD thesis, Division of Engineering and Applied Physics, Harvard University
Cambridge Massachusetts, Febuary 1972.

[24] Robert Philip Goldberg. Survey of virtual machine research. IEEE Computer
Magazine, June 7(6):34–45, 1974.

[25] Mel Gorman. Understanding the Linux Virtual Memory Manager. Prentice Hall
PTR, 2004. ISBN 0131453483.

106

http://lwn.net/Articles/23732/
http://lwn.net/Articles/23732/
http://lwn.net/Articles/77106/
http://lwn.net/Articles/77106/
http://lwn.net/Articles/85908/
http://lwn.net/Articles/85908/
http://lwn.net/Articles/75198/
http://lwn.net/Articles/75198/
http://www.spec.org/web99
http://www.spec.org/web99
http://www.cl.cam.ac.uk/netos/papers/2004-oasis-ngio.pdf
http://www.cl.cam.ac.uk/netos/papers/2004-oasis-ngio.pdf
http://lists.xensource.com/archives/html/xen-devel/2006-03/msg00673.html
http://lists.xensource.com/archives/html/xen-devel/2006-03/msg00673.html
http://lists.xensource.com/archives/html/xen-devel/2006-05/msg01104.html
http://lists.xensource.com/archives/html/xen-devel/2006-05/msg01104.html

[26] Judith S. Hall and Paul T. Robinson. Virtualizing the vax architecture. In
ISCA ’91: Proceedings of the 18th annual international symposium on Computer
architecture, pages 380–389. ACM Press, 1991.

[27] Steven Hand, Andrew Warfield, Keir Fraser, Evangelos Kotsovinos, and Dan
Magenheimer. Are Virtual Machine Monitors Microkernels Done Right? In
Proceedings of the 10th USENIX Workshop on Hot Topics in Operating Systems
(HotOS-X), Santa Fe, NM, June 2005.

[28] Val Henson. An analysis of compare-by-hash. In HotOS, pages 13–18, 2003.

[29] Val Henson and Richard Henderson. Guidelines for using compare-by-hash.
http://infohost.nmt.edu/~val/review/hash2.pdf.

[30] Paul Hsieh. Hash functions. http://www.azillionmonkeys.com/qed/hash.
html.

[31] Bob Hyatt. Crafty. http://www.limunltd.com/crafty/.

[32] Bob Jenkins. A hash function for hash table lookup. http://burtleburtle.
net/bob/hash/doobs.html.

[33] Jacob Faber Kloster, Jesper Kristensen, and Arne Mejlholm. Efficient memory
sharing in the xen virtual machine monitor. Technical report, Department of
Computer Science, Aalborg University, January 2006. http://www.cs.aau.dk/
library/cgi-bin/detail.cgi?id=1136884892.

[34] Donald Ervin Knuth. Sorting and Searching, volume 3. Addison Wesley Long-
man, 1998. ISBN 0-201-89685-0.

[35] Mika Kuoppala. Tiobench - threaded i/o bench for linux. http://directory.
fsf.org/all/tiobench.html.

[36] Joshua LeVasseur, Volkmar Uhlig, Matthew Chapman, Peter Chubb, Ben
Leslie, and Gernot Heiser. Pre-virtualization: Slashing the cost of virtualiza-
tion. Technical Report 2005-30, Fakultät für Informatik, Universität Karlsruhe
(TH), November 2005.

[37] Jochen Liedtke. Toward real microkernels. Commun. ACM, 39(9):70–77, 1996.

[38] Robert Love. Linux Kernel Development. Novell Press, 2005. ISBN 0131453483.

[39] Stuart E. Madnick and John J. Donovan. Application and analysis of the virtual
machine approach to information system security and isolation. In Proceedings
of the workshop on virtual computer systems, pages 210–224, 1973.

[40] Ulrich Neumerkel. Mergemem project. http://www.complang.tuwien.ac.at/
ulrich/mergemem/.

[41] Gerald J. Popek and Robert Philip Goldberg. Formal requirements for virtu-
alizable third generation architectures. Commun. ACM, 17(7):412–421, 1974.
ISSN 0001-0782.

107

http://infohost.nmt.edu/~val/review/hash2.pdf
http://www.azillionmonkeys.com/qed/hash.html
http://www.azillionmonkeys.com/qed/hash.html
http://www.limunltd.com/crafty/
http://burtleburtle.net/bob/hash/doobs.html
http://burtleburtle.net/bob/hash/doobs.html
http://www.cs.aau.dk/library/cgi-bin/detail.cgi?id=1136884892
http://www.cs.aau.dk/library/cgi-bin/detail.cgi?id=1136884892
http://directory.fsf.org/all/tiobench.html
http://directory.fsf.org/all/tiobench.html
http://www.complang.tuwien.ac.at/ulrich/mergemem/
http://www.complang.tuwien.ac.at/ulrich/mergemem/

[42] Ian Pratt, Keir Fraser, Steven Hand, Christian Limpach, Andrew Warfield,
Dan Magenheimer, Jun Nakajima, and Asit Mallick. Xen 3.0 and the art of
virtualization. In Proceedings of the 2005 Ottawa Linux Symposium, pages 65–
77, July 2005.

[43] Philipp Richter and Philipp Reisner. Mergemem. http://mergemem.ist.org/.

[44] John Scott Robin and Cynthia E. Irvine. Analysis of the intel pentiums ability
to support a secure virtual machine monitor. In USENIX Security Symposium,
pages 129–144, 2000.

[45] Mendel Rosenblum. The reincarnation of virtual machines. Queue, 2(5):34–40,
2004.

[46] Mendel Rosenblum and Tal Garfinkel. Virtual machine monitors: Current tech-
nology and future trends. Computer, 38(5):39–47, 2005.

[47] Peter Rundberg. Freebench. http://www.freebench.org/.

[48] Selvamuthukumar Senthilvelan and Murugappan Senthilvelan. Study
of content-based sharing on the xen virtual machine monitor.
http://www.cs.wisc.edu/~remzi/Classes/736/Spring2005/Projects/
Muru-Selva/cs736-report.pdf.

[49] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim. Virtualizing
i/o devices on vmware workstation’s hosted virtual machine monitor. In Pro-
ceedings of the General Track: 2002 USENIX Annual Technical Conference,
pages 1–14. USENIX Association, 2001.

[50] Andrew S. Tanenbaum. Modern Operating Systems (2nd ed.). Prentice Hall
PTR, 2001. ISBN 0130313580.

[51] Andrew S. Tanenbaum, Jorrit N. Herder, and Herbert Bos. Can we make
operating systems reliable and secure? Computer, 39(5):44–51, 2006.

[52] The Open Source Database Benchmark Team. The open source database bench-
mark. http://osdb.sourceforge.net.

[53] The Xen team. Xen interface manual. http://www.cl.cam.ac.uk/Research/
SRG/netos/xen/readmes/interface/interface.html.

[54] Andrew Tridgell. The dbench benchmark. http://samba.org/ftp/tridge/
dbench/README.

[55] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C. M. Martins,
Andrew V. Anderson, Steven M. Bennett, Alain Kagi, Felix H. Leung, and Larry
Smith. Intel virtualization technology. Computer, 38(5):48–56, 2005.

[56] unixshell#. Xen. http://www.unixshell.com/xen.html.

108

http://mergemem.ist.org/
http://www.freebench.org/
http://www.cs.wisc.edu/~remzi/Classes/736/Spring2005/Projects/Muru-Selva/cs736-report.pdf
http://www.cs.wisc.edu/~remzi/Classes/736/Spring2005/Projects/Muru-Selva/cs736-report.pdf
http://osdb.sourceforge.net
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/readmes/interface/interface.html
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/readmes/interface/interface.html
http://samba.org/ftp/tridge/dbench/README
http://samba.org/ftp/tridge/dbench/README
http://www.unixshell.com/xen.html

[57] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C.
Snoeren, Geoffrey M. Voelker, and Stefan Savage. Scalability, fidelity, and con-
tainment in the potemkin virtual honeyfarm. In Proceedings of the ACM Sym-
posium on Operating Systems Principles, October 2005.

[58] Carl A. Waldspurger. Memory resource management in vmware esx server.
SIGOPS Oper. Syst. Rev., 36(SI):181–194, 2002.

[59] Amos Waterland. Stress project page. http://weather.ou.edu/~apw/
projects/stress/.

[60] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Denali: Lightweight
virtual machines for distributed and networked applications. In Proceed-
ings of the USENIX Annual Technical Conference, 2002. http://denali.cs.
washington.edu/pubs/distpubs/papers/denali_usenix2002.pdf.

[61] Mark Williamson. 1st year progress report. http://www.cambridge.
intel-research.net/~mwilli2/proposal_final.pdf.

[62] Mark Williamson. Xen wiki: Xenfs. http://wiki.xensource.com/xenwiki/
XenFS.

109

http://weather.ou.edu/~apw/projects/stress/
http://weather.ou.edu/~apw/projects/stress/
http://denali.cs.washington.edu/pubs/distpubs/papers/denali_usenix2002.pdf
http://denali.cs.washington.edu/pubs/distpubs/papers/denali_usenix2002.pdf
http://www.cambridge.intel-research.net/~mwilli2/proposal_final.pdf
http://www.cambridge.intel-research.net/~mwilli2/proposal_final.pdf
http://wiki.xensource.com/xenwiki/XenFS
http://wiki.xensource.com/xenwiki/XenFS

Summary

This thesis examines the feasibility of sharing pages in a virtual machine system.
The first part of the thesis is concerned with introducing terminology necessary for
understanding virtualization as well as arguing that sharing memory between virtual
machines is worthwhile investigating. We found that this was the case, so we decided
that building an implementation to have first hand experiences with memory sharing,
was the right approach. As a matter of inspiration we examine related work and
find that there are two noteworthy approaches to finding identical pages in memory:
Actively searching for identical pages in the system or by use of prior knowledge
about their existence. We examined two examples of use of this: The first example,
called content-based page sharing, finds pages through a technique called compare-
by-hash. The second example called flash cloning uses prior knowledge and takes
an entirely different approach. It starts a virtual machine, suspends it and then
clones more virtual machines from the first virtual machine. In both cases the pages
are shared using Copy-on-Write. This means that when the pages are attempted
updated, a Copy-on-Write page fault will be triggered. This then initiates a sequence
of actions, that creates a private copy, which can then be modified.

We choose to implement content-based page sharing for the Xen virtual machine
monitor. To accomplish this we propose two different designs: One that is trans-
parent to the guest operating system and a paravirtualized version. The first uses
notoriously expensive shadow page tables to achieve a level of indirection between
virtual and machine addresses. The latter design avoids this overhead by a series of
modifications to the guest operating system. The latter is however clearly the most
expensive design to implement and therefore we focus on the first, as Xen already has
a working shadow page table implementation. Our actual implementation is based
on the Potemkin framework, which introduced flash cloning as described above, as
this has a working Copy-on-Write implementation.

Having produced a working implementation, we are able to explore memory
sharing in a virtual machine system. We do this by a series of synthetic as well as
best and worst case experiments. We find that the best case experiments are able
to share up to 80% on idle machines. This is due to zero pages. Another best case
experiment runs a number of virtual machines that are doing kernel compiles and
on this workload roughly 50% of all the memory allocated to the virtual machines
can be reclaimed. The worst case test examines virtual machines running completely
different applications and we find that the sharing percentage drops to 6% on this
workload. A further investigation shows that the 6% are mostly due to the fact that
the virtual machines are running on the same Xen modified kernel image.

As for the synthetic workload experiments, we examine virtual machines doing

111

a wide range of tasks, such as web servers, databases, compilation of source ap-
plications, etc. On these workloads the percentage of pages that can be reclaimed
typically range between 4-12%. The reader should though note that in these ex-
periments the memory allocations of the virtual machines have been increased, so
the kernel images take up a lower percentage of the total memory. We conclude the
conditions for sharing pages are best on workloads running similar applications, but
no matter what there seem to be something to share on almost every workload. Fur-
thermore we note that we did not examine the impact of running different operating
systems, but based on other experiments we estimate that the number of shares be-
tween different operating systems probably will be minimal. Finally we examine the
feasibility of sharing zero pages. We find that zero pages are only worthwhile sharing
on idle workloads, as breaking the Copy-on-Write sharing incurs an overhead. This
is intensified by the fact that zero pages are usually free pages within the operating
system. When pages are needed in the operating system, the zero pages are used.
Thus we have set up shared pages only to tear them down. Consequently we choose
not to share zero pages, but do note that it is optional in the implementation. Finally
we used the memory we freed due to reclaimed pages to overcommit the system. In
an experiment we successfully overcommitted the system by 16 times its capacity.

In order to determine whether it is feasible to share the pages we examine the
overhead of our implementation. Through a series of benchmarks we found that
the overhead at the overall level is minimal. As the performance of the design im-
plemented however is bounded by the use of shadow page tables, we examine the
overhead of using these further. We found that the shadow page tables incur signif-
icant overheads on workloads with large processes and forking intensive operations.

Finally we concluded that sharing pages between virtual machines is feasible
if the virtual machines are doing similar tasks. The use of shadow page tables in
the implementation incurs that the application of content-based pages sharing is
too inefficient on contemporary personal computer hardware. However as hardware
virtualization supported chipsets depend on the use of shadow page tables, the fea-
sibility of doing content-based page sharing can be reevaluated. Using these chips,
the expenses of using shadow page tables are mandatory and therefore sharing might
as well be done. Furthermore as a side effect of having implemented content-based
page sharing we were able to verify the results of VMware and Potemkin during the
experiments.

112

Appendices

113

Appendix A

Glossary

- ABI: Application Binary Interface. The low level interface between the oper-
ating system and any application program.

- CoW: Copy-on-Write. A technique commonly used for sharing memory. When
a page shared in this manner is attempted modified, then it triggers a page
fault. A direct consequence of this is to create a private copy and carry out
the modifications to this copy.

- CS: CoW Sharing. A part of our design. This component handles creating
shares and tearing them down.

- GDT: Global Descriptor Table. Equivalent of a page table when using seg-
mentation instead of paging.

- GMFN: Guest specific Machine Frame Number. See the latter part of Sec-
tion 4.2 on page 28 for the details.

- GPFN: Guest specific Physical Frame Number. See the latter part of Sec-
tion 4.2 on page 28 for the details.

- HI: Hash Indexing. A part of our design. This is responsible for inserting hash
values into the content index and reporting whether there are conflicts.

- LDT: Local Descriptor Table. Equivalent of a page table when using segmen-
tation instead of paging.

- M2P: Machine To Physical. See the latter part of Section 4.2 on page 28 for the
details.

- MFN: Machine Frame Number. See the latter part of Section 4.2 on page 28
for the details.

- MMU: Memory Management Unit. Part of the processor that is responsible
for the translation of virtual addresses to machine addresses.

- P2M: Physical To Machine. See the latter part of Section 4.2 on page 28 for the
details.

- PAE: Physical Address Extension. A modification to paging that enables the
processor to make use of up to 64 GB of memory instead of 4 GB on the IA-32
architecture.

115

- PC: Page Comparison. A part of our design. This is responsible for comparing
two pages to ensure that they are bitwise identical.

- PFN: Physical Frame Number. See the latter part of Section 4.2 on page 28
for the details.

- PGD: Page Global Directory. The first level part of a Page Table (PT).

- PH: Page Hashing. A part of our design. Responsible for reading the contents
of a page and producing a hash value.

- PSE: Page Size Extension. A modification to normal paging, which enables
the processor to use pages of size 2/4 MB. Such a page requires only one
page table entry and thus only one entry in the Translation Look-ahead Buffer
(TLB), so a larger percentage of the memory can be kept in the TLB.

- PT: Page Table. Used as a general term for a Page Global Directory and a
number of Page Table Entry (PTE) tables.

- PTE: Page Table Entry. The second level part of a Page Table (PT).

- RM: Reference Manager. A part of our implementation. This is responsible
for keeping count of reference count to shared pages.

- SFH: SuperFastHash. The name of the hash function we make use of.

- SPT: Shadow Page Table. A hardware specific representation of an operating
systems page table subjected to another level of paging. See Section 4.4 on
page 31 for a more detailed explanation.

- TLB: Translation Look-aside Buffer. A cache used for the translation of virtual
addresses.

- VM (domain): Virtual Machine. A software abstraction of the actual hard-
ware.

- VMA: Virtual Memory Area. The Linux kernels descriptor of a memory area.

- VMM: Virtual Machine Monitor (hypervisor). The part of a virtual machine
system that administers the actual hardware, thus ensuring the safety of the
system.

- VMS: Virtual Machine System. A common term for a system comprised of a
Virtual Machine Monitor (VMM) and a number of Virtual Machines (VMs).

- ln: Level n Page Table (PT). Xen terminology for the constituent of PTs. On
IA-32 the l1 table refers to the PTE table, while the l2 refers to the PGD table.

- rmap: revers mapping. A means of finding all the virtual addresses that are
pointing to a given page. See Section 4.1 on page 26 for the details.

116

Appendix B

AIM Benchmarks

The tables in this appendix shows the results of the AIM Independent Resource
Benchmark experiments conducted on the two test machines. Table B.1, B.2 B.3
and B.4 is from the 700 MHz AMD Atlhon with 64 MB of memory. The results
from the Sun Fire X4100 server can be found in Table B.5, B.6, B.7 and B.8. The
highlighted rows in the tables are used in Section 8.1 on page 87.

117

No. Operation Debian Domain 0 Unit/second
1 creat-clo 94750.00 83486.09 File Creations and Closes
2 page test 74888.37 56005.67 System Allocations & Pages
3 brk test 882152.97 950866.67 System Memory Allocations
4 jmp test 5880866.67 6207182.14 Non-local gotos
5 signal test 95900.68 167788.70 Signal Traps
6 exec test 63.44 53.46 Program Loads
7 fork test 2577.90 844.30 Task Creations
8 link test 33524.40 43115.26 Link/Unlink Pairs
9 disk rr 46212.16 39351.85 Random Disk Reads (K)
10 disk rw 40649.80 33946.16 Random Disk Writes (K)
11 disk rd 192927.54 187841.39 Sequential Disk Reads (K)
12 disk wrt 62220.74 57627.71 Sequential Disk Writes (K)
13 disk cp 44847.96 37363.55 Disk Copies (K)
14 sync disk rw 475.39 352.19 Sync Random Disk Writes (K)
15 sync disk wrt 161.67 137.67 Sync Sequential Disk Writes (K)
16 sync disk cp 160.33 132.52 Sync Disk Copies (K)
17 disk src 19872.50 24250.00 Directory Searches
18 fun cal 45516800.00 46481853.02 Function Calls (no arguments)
19 fun cal1 48008533.33 48691618.06 Function Calls (1 argument)
20 fun cal2 74577437.09 75609798.37 Function Calls (2 arguments)
21 fun cal15 36172800.00 36655514.83 Function Calls (15 arguments)
22 sieve 4.67 5.01 Integer Sieves
23 num rtns 1 63411.67 64239.29 Numeric Functions
24 new raph 186456.67 188215.30 Zeros Found
25 trig rtns 305000.00 309511.91 Trigonometric Functions
26 matrix rtns 636825.00 646045.66 Point Transformations
27 array rtns 159.35 160.56 Linear Systems Solved
28 string rtns 1341.22 1363.18 String Manipulations
29 mem rtns 1 883352.77 933844.36 Dynamic Memory Operations
30 mem rtns 2 262741.67 211714.43 Block Memory Operations
31 sort rtns 1 332.00 325.95 Sort Operations
32 misc rtns 1 5840.17 3133.81 Auxiliary Loops
33 dir rtns 1 987333.33 1934177.64 Directory Operations
34 shell rtns 1 23.35 18.97 Shell Scripts
35 shell rtns 2 23.35 19.07 Shell Scripts
36 shell rtns 3 23.39 19.12 Shell Scripts
37 series 1 1973886.67 1994602.57 Series Evaluations
38 shared memory 198761.67 214166.94 Shared Memory Operations
39 fifo test 247381.67 244703.33 FIFO Messages
40 stream pipe 232378.33 250783.20 Stream Pipe Messages
41 dgram pipe 225051.67 241321.45 DataGram Pipe Messages
42 pipe cpy 297168.33 291254.79 Pipe Messages
43 ram copy 1106419428 1117391699 Memory to Memory Copy

Table B.1: Results from the AIM benchmark running in Debian and domain-0.

118

No. Operation XenU XenU SPT Unit/second
1 creat-clo 99866.69 94700.88 File Creations and Closes
2 page test 55949.01 51824.09 System Allocations & Pages
3 brk test 599900.03 892485.84 System Memory Allocations
4 jmp test 4566127.96 4624479.25 Non-local gotos
5 signal test 169088.49 164072.65 Signal Traps
6 exec test 149.65 117.96 Program Loads
7 fork test 835.27 592.05 Task Creations
8 link test 36498.22 34412.21 Link/Unlink Pairs
9 disk rr 39148.43 35639.63 Random Disk Reads (K)
10 disk rw 33116.96 31180.03 Random Disk Writes (K)
11 disk rd 211506.08 210567.57 Sequential Disk Reads (K)
12 disk wrt 54208.76 54576.95 Sequential Disk Writes (K)
13 disk cp 37411.45 40118.45 Disk Copies (K)
14 sync disk rw 315.17 310.96 Sync Random Disk Writes (K)
15 sync disk wrt 127.64 75.49 Sync Sequential Disk Writes (K)
16 sync disk cp 130.06 127.79 Sync Disk Copies (K)
17 disk src 21852.61 22502.50 Directory Searches
18 fun cal 37190601.57 36653091.15 Function Calls (no arguments)
19 fun cal1 44698683.55 45150874.85 Function Calls (1 argument)
20 fun cal2 53187935.34 52437127.15 Function Calls (2 arguments)
21 fun cal15 27809396.87 27686052.32 Function Calls (15 arguments)
22 sieve 5.16 5.24 Integer Sieves
23 num rtns 1 64918.36 62942.84 Numeric Functions
24 new raph 180646.56 182596.23 Zeros Found
25 trig rtns 300516.41 289618.40 Trigonometric Functions
26 matrix rtns 415744.04 413921.01 Point Transformations
27 array rtns 275.57 276.06 Linear Systems Solved
28 string rtns 936.62 932.87 String Manipulations
29 mem rtns 1 922846.19 937500.00 Dynamic Memory Operations
30 mem rtns 2 327040.00 325397.43 Block Memory Operations
31 sort rtns 1 328.17 334.72 Sort Operations
32 misc rtns 1 2833.03 2338.11 Auxiliary Loops
33 dir rtns 1 1889036.99 1904182.64 Directory Operations
34 shell rtns 1 35.31 27.13 Shell Scripts
35 shell rtns 2 35.64 26.60 Shell Scripts
36 shell rtns 3 36.26 27.51 Shell Scripts
37 series 1 1641574.74 1634409.27 Series Evaluations
38 shared memory 204305.95 190511.50 Shared Memory Operations
39 fifo test 215292.45 219056.82 FIFO Messages
40 stream pipe 228511.91 233617.73 Stream Pipe Messages
41 dgram pipe 219883.37 223266.12 DataGram Pipe Messages
42 pipe cpy 252954.51 270388.27 Pipe Messages
43 ram copy 970223567 986497198 Memory to Memory Copy

Table B.2: Results from the AIM benchmark running in XenU without SPTs and
with SPTs.

119

No. Operation Page scanning CBPS Unit/second
1 creat-clo 92952.35 94167.64 File Creations and Closes
2 page test 51710.81 51444.76 System Allocations & Pages
3 brk test 851982.67 886402.27 System Memory Allocations
4 jmp test 4549241.79 4597300.45 Non-local gotos
5 signal test 168305.28 166438.93 Signal Traps
6 exec test 118.00 122.61 Program Loads
7 fork test 598.50 610.75 Task Creations
8 link test 34862.59 31674.27 Link/Unlink Pairs
9 disk rr 37673.38 34889.70 Random Disk Reads (K)
10 disk rw 31446.07 31984.01 Random Disk Writes (K)
11 disk rd 207461.51 211591.40 Sequential Disk Reads (K)
12 disk wrt 54500.75 54047.29 Sequential Disk Writes (K)
13 disk cp 36078.84 40008.00 Disk Copies (K)
14 sync disk rw 311.29 300.60 Sync Random Disk Writes (K)
15 sync disk wrt 105.05 77.79 Sync Sequential Disk Writes (K)
16 sync disk cp 120.23 113.07 Sync Disk Copies (K)
17 disk src 21992.58 22347.53 Directory Searches
18 fun cal 36339886.70 36753066.67 Function Calls (no arguments)
19 fun cal1 44476853.86 44963172.80 Function Calls (1 argument)
20 fun cal2 53896083.99 53077020.50 Function Calls (2 arguments)
21 fun cal15 28343009.50 28756281.24 Function Calls (15 arguments)
22 sieve 4.86 5.32 Integer Sieves
23 num rtns 1 61991.33 62697.88 Numeric Functions
24 new raph 178606.90 181603.07 Zeros Found
25 trig rtns 300116.65 288903.70 Trigonometric Functions
26 matrix rtns 407853.69 411694.72 Point Transformations
27 array rtns 272.53 277.10 Linear Systems Solved
28 string rtns 896.52 929.38 String Manipulations
29 mem rtns 1 798866.86 851858.02 Dynamic Memory Operations
30 mem rtns 2 319945.02 323699.38 Block Memory Operations
31 sort rtns 1 330.33 332.06 Sort Operations
32 misc rtns 1 2166.50 2150.31 Auxiliary Loops
33 dir rtns 1 1905349.11 1913847.69 Directory Operations
34 shell rtns 1 26.40 27.16 Shell Scripts
35 shell rtns 2 26.37 26.73 Shell Scripts
36 shell rtns 3 26.38 27.12 Shell Scripts
37 series 1 1585117.48 1591479.75 Series Evaluations
38 shared memory 179928.33 187578.33 Shared Memory Operations
39 fifo test 214784.20 208701.88 FIFO Messages
40 stream pipe 227820.36 227910.35 Stream Pipe Messages
41 dgram pipe 217887.02 218360.27 DataGram Pipe Messages
42 pipe cpy 276207.30 272766.21 Pipe Messages
43 ram copy 966326934.5 949645127.8 Memory to Memory Copy

Table B.3: Results from the AIM benchmark running in Xen with page scanning
and content-based page sharing.

120

No. Operation Potemkin Unit/second
1 creat-clo 99216.67 File Creations and Closes
2 page test 52540.82 System Allocations & Pages
3 brk test 856797.73 System Memory Allocations
4 jmp test 4041441.89 Non-local gotos
5 signal test 167972.00 Signal Traps
6 exec test 118.04 Program Loads
7 fork test 556.94 Task Creations
8 link test 37044.13 Link/Unlink Pairs
9 disk rr 38289.14 Random Disk Reads (K)
10 disk rw 35360.29 Random Disk Writes (K)
11 disk rd 211812.06 Sequential Disk Reads (K)
12 disk wrt 54482.60 Sequential Disk Writes (K)
13 disk cp 41110.11 Disk Copies (K)
14 sync disk rw 314.50 Sync Random Disk Writes (K)
15 sync disk wrt 122.70 Sync Sequential Disk Writes (K)
16 sync disk cp 117.11 Sync Disk Copies (K)
17 disk src 22045.08 Directory Searches
18 fun cal 36490984.84 Function Calls (no arguments)
19 fun cal1 42761939.68 Function Calls (1 argument)
20 fun cal2 54826062.32 Function Calls (2 arguments)
21 fun cal15 28833055.65 Function Calls (15 arguments)
22 sieve 5.14 Integer Sieves
23 num rtns 1 63057.31 Numeric Functions
24 new raph 172481.25 Zeros Found
25 trig rtns 300899.70 Trigonometric Functions
26 matrix rtns 413737.71 Point Transformations
27 array rtns 274.48 Linear Systems Solved
28 string rtns 933.75 String Manipulations
29 mem rtns 1 945342.44 Dynamic Memory Operations
30 mem rtns 2 325144.14 Block Memory Operations
31 sort rtns 1 334.50 Sort Operations
32 misc rtns 1 2237.13 Auxiliary Loops
33 dir rtns 1 1935854.72 Directory Operations
34 shell rtns 1 26.26 Shell Scripts
35 shell rtns 2 27.54 Shell Scripts
36 shell rtns 3 27.44 Shell Scripts
37 series 1 1623942.68 Series Evaluations
38 shared memory 189480.09 Shared Memory Operations
39 fifo test 221936.34 FIFO Messages
40 stream pipe 232566.24 Stream Pipe Messages
41 dgram pipe 222981.17 DataGram Pipe Messages
42 pipe cpy 283306.12 Pipe Messages
43 ram copy 980988678 Memory to Memory Copy

Table B.4: Results from the AIM benchmark running Potemkin.

121

No. Operation Ubuntu Domain 0 Unit/second
1 creat-clo 200599.90 288672.33 File Creations and Closes
2 page test 277280.45 287328.33 System Allocations & Pages
3 brk test 2574933.33 2599716.71 System Memory Allocations
4 jmp test 21937143.81 21376270.62 Non-local gotos
5 signal test 585000.00 574587.57 Signal Traps
6 exec test 151.20 146.48 Program Loads
7 fork test 5564.07 3399.43 Task Creations
8 link test 77588.37 119799.73 Link/Unlink Pairs
9 disk rr 101615.06 174221.63 Random Disk Reads (K)
10 disk rw 86513.58 152585.04 Random Disk Writes (K)
11 disk rd 442049.98 758060.32 Sequential Disk Reads (K)
12 disk wrt 130879.52 248407.86 Sequential Disk Writes (K)
13 disk cp 97641.57 180730.97 Disk Copies (K)
14 sync disk rw 183.43 203.11 Sync Random Disk Writes (K)
15 sync disk wrt 51.19 51.59 Sync Sequential Disk Writes (K)
16 sync disk cp 51.25 51.93 Sync Disk Copies (K)
17 disk src 53539.83 80359.11 Directory Searches
18 fun cal 242048000.00 236726412.26 Function Calls (no arguments)
19 fun cal1 290227200.00 283839626.73 Function Calls (1 argument)
20 fun cal2 253918213.63 268448058.66 Function Calls (2 arguments)
21 fun cal15 121147733.33 112297017.16 Function Calls (15 arguments)
22 sieve 52.05 56.24 Integer Sieves
23 num rtns 1 225695.00 220848.19 Numeric Functions
24 new raph N/A N/A Zeros Found
25 trig rtns 1102149.64 1074487.59 Trigonometric Functions
26 matrix rtns 3486272.29 3403424.43 Point Transformations
27 array rtns 1961.00 1916.35 Linear Systems Solved
28 string rtns 4337.61 4174.30 String Manipulations
29 mem rtns 1 3694768.41 3595400.77 Dynamic Memory Operations
30 mem rtns 2 N/A N/A Block Memory Operations
31 sort rtns 1 1172.67 1144.81 Sort Operations
32 misc rtns 1 13946.18 11137.14 Auxiliary Loops
33 dir rtns 1 5731166.67 6343942.68 Directory Operations
34 shell rtns 1 44.95 43.01 Shell Scripts
35 shell rtns 2 44.90 42.97 Shell Scripts
36 shell rtns 3 44.94 43.03 Shell Scripts
37 series 1 11117683.33 10794248.33 Series Evaluations
38 shared memory 757230.00 737902.02 Shared Memory Operations
39 fifo test 412884.52 724400.00 FIFO Messages
40 stream pipe 557710.00 729576.74 Stream Pipe Messages
41 dgram pipe 517641.67 690988.17 DataGram Pipe Messages
42 pipe cpy 495640.73 873411.10 Pipe Messages
43 ram copy 4233480327 4163076966 Memory to Memory Copy

Table B.5: Results from the AIM benchmark running in Ubuntu and domain-0.

122

No. Operation XenU XenU SPT Unit/second
1 creat-clo 329861.69 318363.61 File Creations and Closes
2 page test 283966.01 273201.13 System Allocations & Pages
3 brk test 2695467.42 3064589.24 System Memory Allocations
4 jmp test 16152157.97 16157997.33 Non-local gotos
5 signal test 623746.04 621616.67 Signal Traps
6 exec test 828.50 565.58 Program Loads
7 fork test 3554.89 2013.00 Task Creations
8 link test 144096.88 143688.50 Link/Unlink Pairs
9 disk rr 210668.00 208946.51 Random Disk Reads (K)
10 disk rw 182467.18 180304.51 Random Disk Writes (K)
11 disk rd 982961.51 972296.62 Sequential Disk Reads (K)
12 disk wrt 292729.88 293045.91 Sequential Disk Writes (K)
13 disk cp 219611.40 219282.36 Disk Copies (K)
14 sync disk rw 197.53 199.94 Sync Random Disk Writes (K)
15 sync disk wrt 56.69 56.79 Sync Sequential Disk Writes (K)
16 sync disk cp 56.23 57.44 Sync Disk Copies (K)
17 disk src 99193.75 98359.86 Directory Searches
18 fun cal 136920113.31 136996900.52 Function Calls (no arguments)
19 fun cal1 246196833.86 243927345.44 Function Calls (1 argument)
20 fun cal2 296782536.24 273550141.64 Function Calls (2 arguments)
21 fun cal15 108534444.26 108577103.82 Function Calls (15 arguments)
22 sieve 61.99 59.46 Integer Sieves
23 num rtns 1 233974.34 245853.33 Numeric Functions
24 new raph N/A N/A Zeros Found
25 trig rtns 1062822.86 1064333.33 Trigonometric Functions
26 matrix rtns 3480578.24 3159135.14 Point Transformations
27 array rtns 985.50 984.67 Linear Systems Solved
28 string rtns 3245.04 3246.13 String Manipulations
29 mem rtns 1 3818363.61 3812864.52 Dynamic Memory Operations
30 mem rtns 2 N/A N/A Block Memory Operations
31 sort rtns 1 1018.16 1079.67 Sort Operations
32 misc rtns 1 15187.64 12283.95 Auxiliary Loops
33 dir rtns 1 6567572.07 6557907.02 Directory Operations
34 shell rtns 1 182.44 134.13 Shell Scripts
35 shell rtns 2 182.65 135.13 Shell Scripts
36 shell rtns 3 182.77 134.83 Shell Scripts
37 series 1 10351338.11 10414860.86 Series Evaluations
38 shared memory 750048.33 732023.00 Shared Memory Operations
39 fifo test 803922.68 831164.81 FIFO Messages
40 stream pipe 796352.27 786045.66 Stream Pipe Messages
41 dgram pipe 752160.00 710951.67 DataGram Pipe Messages
42 pipe cpy 935089.15 948145.31 Pipe Messages
43 ram copy 4068490901.18 4178402133 Memory to Memory Copy

Table B.6: Results from the AIM benchmark running in XenU without SPTs and
with SPTs.

123

No. Operation Page scanning CBPS Unit/second
1 creat-clo 328873.71 330994.83 File Creations and Closes
2 page test 266900.00 261586.40 System Allocations & Pages
3 brk test 2745325.78 3072237.96 System Memory Allocations
4 jmp test 16157557.07 16164589.24 Non-local gotos
5 signal test 611433.33 593067.82 Signal Traps
6 exec test 598.83 600.48 Program Loads
7 fork test 2503.33 2083.61 Task Creations
8 link test 137949.11 143861.90 Link/Unlink Pairs
9 disk rr 195007.00 205141.33 Random Disk Reads (K)
10 disk rw 169216.72 175130.96 Random Disk Writes (K)
11 disk rd 1036285.95 1044903.18 Sequential Disk Reads (K)
12 disk wrt 263550.74 277287.12 Sequential Disk Writes (K)
13 disk cp 206096.63 210191.27 Disk Copies (K)
14 sync disk rw 201.10 200.25 Sync Random Disk Writes (K)
15 sync disk wrt 56.54 52.97 Sync Sequential Disk Writes (K)
16 sync disk cp 55.93 52.64 Sync Disk Copies (K)
17 disk src 95854.02 98082.40 Directory Searches
18 fun cal 137011200.00 137039560.07 Function Calls (no arguments)
19 fun cal1 245761706.38 246358940.18 Function Calls (1 argument)
20 fun cal2 264037060.49 225447225.46 Function Calls (2 arguments)
21 fun cal15 108534444.26 108611231.46 Function Calls (15 arguments)
22 sieve 64.08 62.80 Integer Sieves
23 num rtns 1 246053.33 246000.67 Numeric Functions
24 new raph N/A N/A Zeros Found
25 trig rtns 1063656.06 1066488.92 Trigonometric Functions
26 matrix rtns 3484872.52 3493346.11 Point Transformations
27 array rtns 985.50 985.00 Linear Systems Solved
28 string rtns 3245.04 3235.05 String Manipulations
29 mem rtns 1 3720379.94 3815364.11 Dynamic Memory Operations
30 mem rtns 2 N/A N/A Block Memory Operations
31 sort rtns 1 1014.66 1022.83 Sort Operations
32 misc rtns 1 12550.91 12231.46 Auxiliary Loops
33 dir rtns 1 6577403.77 6595900.68 Directory Operations
34 shell rtns 1 135.60 137.22 Shell Scripts
35 shell rtns 2 136.01 138.40 Shell Scripts
36 shell rtns 3 136.35 137.81 Shell Scripts
37 series 1 10177747.04 10461494.75 Series Evaluations
38 shared memory 714750.00 672392.93 Shared Memory Operations
39 fifo test 810473.25 827640.39 FIFO Messages
40 stream pipe 775215.00 774587.57 Stream Pipe Messages
41 dgram pipe 727472.09 722294.62 DataGram Pipe Messages
42 pipe cpy 944410.00 980906.52 Pipe Messages
43 ram copy 4180793628 4188221253.12 Memory to Memory Copy

Table B.7: Results from the AIM benchmark running in Xen with page scanning
and content-based page sharing.

124

No. Operation Potemkin Unit/second
1 creat-clo 343118.96 File Creations and Closes
2 page test 256190.00 System Allocations & Pages
3 brk test 3016997.17 System Memory Allocations
4 jmp test 16166872.19 Non-local gotos
5 signal test 571016.67 Signal Traps
6 exec test 575.40 Program Loads
7 fork test 2041.97 Task Creations
8 link test 140945.31 Link/Unlink Pairs
9 disk rr 204748.83 Random Disk Reads (K)
10 disk rw 174562.91 Random Disk Writes (K)
11 disk rd 1024938.51 Sequential Disk Reads (K)
12 disk wrt 277240.92 Sequential Disk Writes (K)
13 disk cp 207546.82 Disk Copies (K)
14 sync disk rw 200.56 Sync Random Disk Writes (K)
15 sync disk wrt 56.52 Sync Sequential Disk Writes (K)
16 sync disk cp 55.86 Sync Disk Copies (K)
17 disk src 96091.25 Directory Searches
18 fun cal 137176070.65 Function Calls (no arguments)
19 fun cal1 246565278.24 Function Calls (1 argument)
20 fun cal2 264779336.78 Function Calls (2 arguments)
21 fun cal15 108646400.00 Function Calls (15 arguments)
22 sieve 58.77 Integer Sieves
23 num rtns 1 246016.67 Numeric Functions
24 new raph N/A Zeros Found
25 trig rtns 1035000.00 Trigonometric Functions
26 matrix rtns 2832324.61 Point Transformations
27 array rtns 986.50 Linear Systems Solved
28 string rtns 3247.25 String Manipulations
29 mem rtns 1 3847217.59 Dynamic Memory Operations
30 mem rtns 2 N/A Block Memory Operations
31 sort rtns 1 1124.83 Sort Operations
32 misc rtns 1 12405.53 Auxiliary Loops
33 dir rtns 1 6583000.00 Directory Operations
34 shell rtns 1 131.24 Shell Scripts
35 shell rtns 2 132.28 Shell Scripts
36 shell rtns 3 135.38 Shell Scripts
37 series 1 10195615.73 Series Evaluations
38 shared memory 681706.38 Shared Memory Operations
39 fifo test 835113.33 FIFO Messages
40 stream pipe 793701.67 Stream Pipe Messages
41 dgram pipe 740003.33 DataGram Pipe Messages
42 pipe cpy 993485.00 Pipe Messages
43 ram copy 4161174195 Memory to Memory Copy

Table B.8: Results from the AIM benchmark running Potemkin.

125

Appendix C

Unabridged Performance
Evaluation Results

The tables in the appendix shows the complete results from the performance evalu-
ation.

127

Linux Build Time (sec) OSDB IR (tup/sec)
No. Sun Fire 700 MHz AMD
1 1045.785 6225.540
2 1048.451 6217.711
3 1048.070 6233.248

No. Sun Fire 700 MHz AMD
1 2225.59 149.05
2 2200.75 164.96
3 2204.90 197.18

OSDB OLTP (tup/sec) dbench (MB/sec)
No. Sun Fire 700 MHz AMD
1 142.31 257.56
2 153.37 305.44
3 153.52 327.84

No. Sun Fire 700 MHz AMD
1 619.110 37.7613
2 613.467 38.8351
3 604.343 37.2971

SPECweb99 (KB/sec)
No. Sun Fire 700 MHz AMD
1 133.3 384.9
2 133.2 385.4
3 133.1 385.5

Table C.1: Benchmark results for Ubuntu and Debian.

Linux Build Time (sec) OSDB IR (tup/sec)
No. Sun Fire 700 MHz AMD
1 330.983 1493.652
2 331.923 1507.197
3 332.840 1499.235

No. Sun Fire 700 MHz AMD
1 803.14 84.18
2 887.09 116.46
3 840.55 113.40

OSDB OLTP (tup/sec) dbench (MB/sec)
No. Sun Fire 700 MHz AMD
1 48.02 129.21
2 42.88 164.52
3 45.26 169.92

No. Sun Fire 700 MHz AMD
1 169.227 9.66996
2 180.794 9.57138
3 181.147 9.61325

SPECweb99 (KB/sec)
No. Sun Fire 700 MHz AMD
1 134.0 382.8
2 135.0 383.1
3 134.1 383.5

Table C.2: Benchmark results for Xen without shadow page tables.

128

Linux Build Time (sec) OSDB IR (tup/sec)
No. Sun Fire 700 MHz AMD
1 374.880 1546.802
2 378.612 1507.197
3 383.407 1488.584

No. Sun Fire 700 MHz AMD
1 906.17 84.14
2 814.31 106.13
3 840.99 110.96

OSDB OLTP (tup/sec) dbench (MB/sec)
No. Sun Fire 700 MHz AMD
1 49.62 132.33
2 42.01 158.27
3 48.15 166.00

No. Sun Fire 700 MHz AMD
1 183.425 9.95482
2 167.056 9.35365
3 155.398 9.14352

SPECweb99 (KB/sec)
No. Sun Fire 700 MHz AMD
1 133.7 363.8
2 133.9 362.7
3 131.7 362.2

Table C.3: Benchmark results for Xen with shadow page tables.

Linux Build Time (sec) OSDB IR (tup/sec)
No. Sun Fire 700 MHz AMD
1 349.611 1560.033
2 343.987 1560.449
3 348.022 1561.003

No. Sun Fire 700 MHz AMD
1 755.42 76.78
2 745.54 89.81
3 777.77 91.62

OSDB OLTP (tup/sec) dbench (MB/sec)
No. Sun Fire 700 MHz AMD
1 41.53 127.51
2 44.30 133.15
3 42.30 132.96

No. Sun Fire 700 MHz AMD
1 156.707 9.1172
2 151.537 9.0078
3 196.764 9.2946

SPECweb99 (KB/sec)
No. Sun Fire 700 MHz AMD
1 90.0 361.4
2 81.6 358.5
3 80.6 358.4

Table C.4: Benchmark results for Potemkin.

129

Linux Build Time (sec) OSDB IR (tup/sec)
No. Sun Fire 700 MHz AMD
1 346.040 1562.059
2 338.363 1555.163
3 338.603 1554.630

No. Sun Fire 700 MHz AMD
1 794.57 80.68
2 771.21 88.83
3 782.68 87.42

OSDB OLTP (tup/sec) dbench (MB/sec)
No. Sun Fire 700 MHz AMD
1 42.36 128.32
2 40.90 137.02
3 39.28 132.06

No. Sun Fire 700 MHz AMD
1 181.003 9.80688
2 167.460 9.33071
3 185.098 9.37882

SPECweb99 (KB/sec)
No. Sun Fire 700 MHz AMD
1 88.2 361.4
2 88.7 359.3
3 81.6 359.3

Table C.5: Benchmark results for our implementation (no sharing, only scanning).

Linux Build Time (sec) OSDB IR (tup/sec)
No. Sun Fire 700 MHz AMD
1 340.544 1570.807
2 338.827 1582.591
3 339.838 1582.806

No. Sun Fire 700 MHz AMD
1 799.89 94.02
2 747.44 93.46
3 760.34 98.67

OSDB OLTP (tup/sec) dbench (MB/sec)
No. Sun Fire 700 MHz AMD
1 40.49 125.11
2 41.35 125.62
3 39.97 134.63

No. Sun Fire 700 MHz AMD
1 152.171 9.67219
2 166.034 9.75403
3 163.975 9.72496

SPECweb99 (KB/sec)
No. Sun Fire 700 MHz AMD
1 359.4
2 361.2
3 357.3

Table C.6: Benchmark results for our implementation (sharing and scanning).

130

	Contents
	Introduction
	Motivation and Goal
	Virtualization Terminology
	Xen

	Motivation
	Initial Experiments
	Changes in Memory
	Shareable Pages Within a Single OS
	Interdomain Shareable Pages

	Thesis Goal
	Limitations
	Summary

	Related Work
	Compare-By-Hash
	Copy-On-Write
	Interdomain Shared Cache
	Content-Based Page Sharing
	Flash Cloning
	Comparison of the Different Approaches
	Summary

	Essential Memory Management and Virtualization Prerequisites
	Reverse Mapping
	Memory Management in Xen
	Handling Page Tables in Xen
	Shadow Page Tables
	Ballooning
	Events and Event Channels
	Summary

	Revised Design
	Components
	Architectures
	Transparent Design
	Paravirtualized Design

	Algorithms
	Algorithms in the Paravirtualized Design
	Algorithms in the Transparent Design

	Changes to the Original Design
	Summary

	Implementation
	Implementation Status
	Overall Description
	Super Page Problem
	Sharing Pages
	Handling Page Faults to Shared Pages
	Filtering Pages
	Size of the Content Index
	Summary

	Sharing Evaluation
	Benchmarks
	Best Case Experiments
	Idle Virtual Machines
	Virtual Machines running Kernel Compiles

	Feasibility of Sharing Zero Pages
	Impact of using Different Binaries
	Worst Case Experiment
	Synthetic Workload Experiments
	Virtual Machines running the Medium Workload Generator
	Virtual Machines running Mixed Workloads

	Overcommitment
	Impact of the Memory Allocation of Virtual Machines
	Comparison with Other Approaches
	Chapter Conclusion and Summary

	Performance Evaluation
	Evaluation using Benchmarks
	Micro Benchmarks
	Benchmark of Frequently Used Functions
	Investigation of the Expensive Operations
	Further Investigation of the Expensive Operations

	Summary

	Conclusion and Future Work
	Future Work

	Bibliography
	Appendices
	Glossary
	AIM Benchmarks
	Unabridged Performance Evaluation Results

