
DOGS: Organized Graph Semantics

E3-210

Department of Computer Science
Aalborg University

TITEL:

DOGS: Organized Graph Semantics

Semester:
Dat2
2. Febuary - 28. May, 2004

Group:
E3-210, 2004

Members:
Kristian Ahlmann-Ohlsen
Anders Bennett-Therkildsen
Jeppe Carlsen
Jesper Kristensen
Arne Mejlholm
Søren Pedersen
Jacob Volstrup Pedersen

SUPERVISOR:
Lone Leth Thomsen

Copies: 9

Report – pages: 149

Appendix – pages: 74

Appendix – cdrom: 1

Total pages: 241

Synopsis:

This report documents the process of de-
veloping the language DOGS (DOGS: Or-
ganised Graph Semantics) designed for stu-
dents working with graph algorithms, and
a compiler dogsc that can translate pro-
grams written in DOGS. The language
contains data types, such as graphs, sets,
vertices, and edges made especially for
working with these algorithms. One of
the main criteria when designing DOGS is
readability, meaning that it should be intu-
itive to write programs in the language and
it should be similar to ordinary pseudo-
code.
The front-end of dogsc is built with the
help of the SableCC tool and it targets
the Java Virtual Machine with bytecode
through the Java Assembler Interface (Jas-
min).

Preface

The purpose of the DOGS language being developed in this project is to provide an
intuitive way of writing graph algorithms from pseudo-code examples and translate
these using the dogsc compiler also being developed.

Although this project focuses on developing a compiler, we specify the behaviour
of DOGS formally in operational semantics to ease the process of developing the
compiler.

The compiler is written in Java and it takes advantage of the Visitor pattern,
a lexer, and a parser provided by the compiler-compiler tool SableCC. The target
machine is the Java Virtual Machine (JVM), through the Java Assembler Interface
(Jasmin) creating Java bytecode.

We structure the report in three main phases:

• Analysis: An inspection of already existing languages and graph theory is
introduced in order to design the language specifying the design criteria of the
language.

• Design of DOGS : Language syntax, type system, and semantics are presented
to chart the guidelines for implementing the language..

• Design of dogsc : Designing the compiler for DOGS, dogsc, involves an elabo-
ration of the type of the DOGS grammar and a discussion of compiler-compiler
tools that can aid us in developing it.

• Implementation: In this final part, the implementation of the compiler is ac-
counted for, and an empirical investigation of the correctness of the compiler
is conducted.

We include a CD, containing

• The dogsc code with Javadoc.

• An executable jar file.

• DOGS source files.

• The necessary library files.

• SableCC grammar file.

• SableCC generated overview of the grammar.

3

• The complete report in PDF format.

Kristian Ahlmann-Ohlsen Anders Bennett-Therkildsen

Jeppe Carlsen Jesper Kristensen

Arne Mejlholm Søren Pedersen

Jacob Volstrup Pedersen

4

Contents

I Analysis Document 11

1 Problem Analysis 13
1.1 Programming Graphs . 13
1.2 Problem Definition . 15
1.3 Focus . 15
1.4 Selection of Method . 16
1.5 Target Audience . 16

2 Applied Graph Algorithms 17
2.1 Introduction to Graphs . 17

2.1.1 Types of Graphs . 17
2.1.2 Representation of Graphs . 19

2.2 Dijkstra’s Algorithm . 19
2.3 Early View of the Language Requirements 21

3 Analysis of Language Features 22
3.1 Primitive Data Types . 22
3.2 Composite Data Types . 23
3.3 Arithmetic and Boolean Expressions 24
3.4 Control Structures . 25

3.4.1 Loops . 26
3.5 Input and Output . 27
3.6 Concurrency . 27

3.6.1 Mutual Exclusion . 27
3.7 Error Handling . 28
3.8 Extensions . 29

4 Programming Paradigms 31
4.1 The Four Main Programming Paradigms 31

4.1.1 The Imperative Paradigm . 31
4.1.2 The Functional Paradigm . 32
4.1.3 The Logical Paradigm . 32
4.1.4 The Object-Oriented Paradigm 32

5 Language Evaluation Criteria 34
5.1 Criteria Assessments . 34

5

CONTENTS CONTENTS

II Design Document 39

6 Design Choices 41
6.1 Programming Paradigm . 41
6.2 Primitive Data Types . 41
6.3 Operators . 43
6.4 Composite Data Types . 43
6.5 Variable References . 45
6.6 Declaration of Variables and Constants 45
6.7 Control Structures . 46
6.8 Functions and Procedures . 47
6.9 Scope Rules . 49
6.10 Error handling . 49
6.11 Concurrency . 50
6.12 Input and Output . 51
6.13 Graphs in DOGS . 51

6.13.1 Vertices and Edges . 51
6.13.2 Labels and Weights . 52

7 The DOGS Language 54
7.1 Syntax Considerations . 54

7.1.1 The “Dangling Else” Problem 54
7.1.2 Precedence Rules . 55

7.2 DOGS Syntax in BNF . 56
7.2.1 V-Names . 57
7.2.2 Expressions . 57
7.2.3 Precedence Rules . 59
7.2.4 Commands . 60
7.2.5 Parameters . 63
7.2.6 Type-denoters . 64
7.2.7 Declarations . 64
7.2.8 Program . 67
7.2.9 Lexicon . 67

7.3 Classification of the DOGS Grammar 68
7.3.1 LL Grammars . 69
7.3.2 LR Grammars . 70
7.3.3 The DOGS Grammar . 71

7.4 Standard Environment . 71
7.5 Dijkstras Algorithm in DOGS . 72

7.5.1 Presentation of Dijkstra’s Algorithm in DOGS 72

8 Type System in DOGS 75
8.1 Introducing Type Systems . 75

8.1.1 Well-behaved Programs . 75
8.2 Formalizing Type Systems . 76
8.3 Typing Judgments . 76
8.4 Defining the Type Rules in DOGS 76

6

CONTENTS CONTENTS

8.4.1 Abstract Syntax . 77
8.4.2 Types and Judgements in DOGS 79

8.5 Records . 82
8.5.1 Declarations . 82
8.5.2 Expressions . 83
8.5.3 Assignments . 83

9 DOGS Operational Semantics 84
9.1 The Environment-Store-Model . 85

9.1.1 Mathematical Shortcuts . 85
9.1.2 Environments . 86
9.1.3 Stores . 88

9.2 Transition Systems in DOGS . 92
9.2.1 Declarations . 92
9.2.2 Expressions . 95
9.2.3 Commands . 97
9.2.4 Standard environment . 99

III Implementation Document 105

10 Compiler Design Choices 107
10.1 Choosing a Virtual Machine . 107

10.1.1 Java Virtual Machine . 107
10.1.2 Triangle Abstract Machine 108
10.1.3 Common Language Runtime 108
10.1.4 Assembler Interface . 108

10.2 Compiler Passes . 109
10.3 Syntax Trees . 110

10.3.1 Concrete Syntax Trees . 110
10.3.2 Abstract Syntax Trees . 110

10.4 Discussion of Compiler-Compiler Tools 111
10.4.1 SableCC . 112
10.4.2 JLex and CUP . 113
10.4.3 JavaCC . 113

10.5 SableCC Framework . 114
10.5.1 Visitor Pattern . 114
10.5.2 Extended Visitor Pattern . 116
10.5.3 SableCC Classes . 116

11 Compiler Design 119
11.1 Compiler Considerations . 119

11.1.1 StandardEnvironment . 119
11.1.2 Library . 119
11.1.3 ErrorList . 120
11.1.4 Packages . 120

11.2 Syntactical Analysis . 121

7

CONTENTS CONTENTS

11.3 Contextual Analysis . 121
11.3.1 Optimizer . 121
11.3.2 Contextual Checks . 123
11.3.3 TypeChecker . 124

11.4 Runtime Organization . 128
11.4.1 Implementing the Types . 128
11.4.2 Standard Environment . 131

11.5 Code Generation . 131

12 Testing dogsc 134
12.1 Hello Dogs . 134
12.2 Testing Dijkstra’s Algorithm in DOGS 135

IV Conclusion 139

13 Conclusion 140
13.1 Evaluating the Design Criteria . 140
13.2 Operational Semantics and JVM . 142
13.3 Realization of DOGS . 142
13.4 Future Course . 143

V Bibliography 145

14 Bibliography 147

VI Appendix 149

A Standard Environment 150
A.1 Types . 150

A.1.1 Primitives . 150
A.1.2 Composite types . 150
A.1.3 Graph types . 151
A.1.4 Graph properties . 151

A.2 Functions and Procedures . 151
A.2.1 Input / Output . 151
A.2.2 Conversion . 152
A.2.3 Sets . 152
A.2.4 Arrays . 153
A.2.5 Graphs . 153

B DOGS Syntax in BNF 154

C SableCC grammar for DOGS 160

8

CONTENTS CONTENTS

D DOGS Formal Type System 169
D.1 Type Rules . 169
D.2 Declaration Rules . 169
D.3 Command Rules . 170
D.4 Expression Rules . 171

E Semantics 183
E.1 Generalized Variables . 183
E.2 Declarations . 185
E.3 Record type Declarations . 191
E.4 Global Constant Declarations . 192
E.5 Procedure and Function Declarations 193
E.6 Formal-Parameter Declarations . 194
E.7 Program and Import . 196
E.8 Commands . 197
E.9 Procedures and Functions in Standard Environment 215
E.10 Expressions . 225
E.11 Actual Parameters . 228
E.12 String Expressions . 229
E.13 Boolean Expressions . 233
E.14 Arithmetic Expressions . 239

9

Part I

Analysis Document

11

Introduction

In the first sections of the analysis we will introduce the “problem at hand” of
the project and discuss the motivation for working with it. This will lead to a
specification of the goals in the Problem Definition. Furthermore, we will discuss
possible methods to structure the project.

The next sections of the analysis covers how to address the goals specified in the
Problem Definition and what has to be accounted for when reaching the design phase.
It is therefore worth noting that the analysis will focus on different considerations
so that we are qualified for making design-specific decisions when we start designing
the language and compiler.

We will start out introducing a basic part of the graph terminology which is
necessary when we discuss graph-related problems as well as a brief inspection of the
ways to represent graphs. Dijkstra’s Algorithm will be presented in pseudo-code in
order to give a feeling of what the goals of the project will be and more importantly
what means we need to reach these goals.

From here we will begin pinpointing the requirements of our language which will
include the concepts of data types, data structures, control structures, etc.

The last part of the analysis will focus on the language evaluation criteria. These
will be discussed and assessed along with a discussion of the four main programming
paradigms which will play an important role in the design of the language.

12

Chapter 1

Problem Analysis

Graphs are some of the most fundamental data structures in the field of computer
science and they can be used to model many different systems: roadmaps, electric
circuits, tasks to be executed in a particular order, etc. Operations on graphs can be
described in very concise functions by a well-defined pseudo-language (such as that
used in [CLRS01]) and should be quite easy to use in programming languages.

In the following we will examine the remedies for working with graphs in pro-
gramming languages. We will inspect some of the commonly used languages1, which
include C, C++, Java, Pascal, Perl, and Python, as well as examine whether or
not programming languages constructed with the specific purpose of working with
graphs already exist. The languages will in this section be compared on how easy
it is to express graphs and graph algorithms in a way that is straightforward and
understandable to readers of [CLRS01].

1.1 Programming Graphs

We have gathered that C and Perl have libraries for working with graphs and have
experimented a bit with the use of those two. Below are five code examples (Listing
1.1 is in the syntax of the pseudo-code from [CLRS01]) on how to iterate over every
vertex in the graph G.

1 FOR each vertex ϑ ∈ V [G]
2 Print ϑ

Listing 1.1: The for each statement in pseudo-code

1 for (vertex = list_head(&graph_adjlists (G)) ; vertex != NULL ;
2 vertex = list_next (vertex)) {
3 printf (”%s ” , vertex . name) ;
4 }

Listing 1.2: The for each statement in C

1The selection of these were based on [Lab]

13

1.1 Programming Graphs 1. Problem Analysis

When considering Listing 1.2 (written in C using <graph.h> from [Lou99]) it
is not only much harder to type than the first example (with a much higher risk
of programming errors), but also much harder to comprehend. In order to easily
understand that code example, one would have to be very proficient in the use of C.

1 begin
2 v := g . vertices ;
3 for i := 1 to length (v) do
4 begin
5 writleln (v [i] . name) ;
6 end ;
7 end ;

Listing 1.3: The for each statement in Pascal

Listing 1.3 illustrates an example of a graph in Pascal. We notice that the
language has somewhat intuitive syntax, espicially the begin..end scope delimiters.
In Pascal, however, one cannot define a graph type without the use of records. Using
records forces to access each member of the record with the . notation, which is
rather non-intuitive when working with graphs.

1 @v = $G−>vertices ;
2 foreach (@v) {
3 print $_ ;
4 }

Listing 1.4: The for each statement in Perl

Listing 1.4 (written in Perl using the Graph::Base library) is a bit more “friendly”
but is still somewhat alien to programmers not familiar with Perl.

1 Graph = { ’A ’ : [’B ’ , ’D ’] ,
2 ’B ’ : [’C ’] ,
3 ’C ’ : [’D ’] ,
4 ’D ’ : [’A ’]}
5
6 for vertex in Graph :
7 print vertex
8 for adjacent in Graph [vertex] :
9 print adjacent ,

Listing 1.5: The for each statement in Python

The final example, in Listing 1.5, is Python, which allows constructs like those
in line 1-4, for the inherently difficult task of representing graphs in computer lan-
guages. For iterating over each element in the graph, the lines 6 and 7 is a clever
usage of the built-in data structures of the language (dictionaries and lists). The
language has really no grasp of vertices and nodes, just elements in lists. Adding a
feature to the program in line 8 and 9 so that it also prints the whole adjacancy list
causes us to notice that in order to get the adjacent edges, we have to de-reference

14

1. Problem Analysis 1.2 Problem Definition

them from the dictionary Graph[vertex] which ruins the “illusion” of a graph. Pro-
gramming graphs in Python is still rather simple compared to C, but there is room
for improvement.

It seems that none of the libraries we have found fully live up to our expectation
of an easy-to-use and comprehensible syntax. Still, we have to examine if some of
the other languages support graphs (or graph-like structures) in a more “natural”
way.

Using one of three object-oriented languages (C++, Java, and Python), one could
make a package that allows representation of graphs as advanced as necessary. This,
however, would still restrict the user of the package into using a somewhat different
notation from that of [CLRS01] and as such force the user to concentrate on syntactic
details rather than algorithmic details.

Now that we have seen that none of the widely used languages examined here
have built-in support for working with graphs, the next step is to examine whether
specialized languages customized to work with graphs exist. This, however, has
proved somewhat difficult since no such languages known to us are available. Though,
we cannot rule out the possibility that a language designed for working specifically
with graphs exists.

Following this revelation it is motivating to develop a language that will provide
support for working with graphs and ease the process of implementing graph-specific
algorithms in an organized manner (hereafter known as). Thus, the goal of this
language, which will be referred to as DOGS(DOGS: Organized Graph Semantics)
is to allow focusing on the actual algorithm design rather than programming and
computer related details.

1.2 Problem Definition

The goal of this project is to develop a compiler, dogsc, for a programming language
being developed in the process, named DOGS, that will have native support for
working with graphs and graph algorithms.

1.3 Focus

Having emphasized the goal of developing a compiler that can translate programs in
a programming language also being developed we state that this is a Language and
Compiler project. This charts guidelines for the focus of the project.

We design DOGS using techniques from [Hüt04] and [WB00] which comprises
the making of both an unambiguous syntax that can be implemented as a LALR2

grammar and formal semantics that will be utilized to specify the behaviour of DOGS
programs.

Developing the dogsc compiler entails a choice of virtual machine suitable for
handling common language functionality, e.g. control and branching structures,
arithmetic and boolean expressions, input/output, etc., as well as the graph-specific
part of DOGS.

2Discussed in Section 7.3

15

1.4 Selection of Method 1. Problem Analysis

1.4 Selection of Method

To realize our goals, preliminary considerations of the structure of the project are
necessary. The phases of our project will broadly assemble those of the Object-
Oriented Analysis and Design method as described in [MMMNS00] in that we will
walk through an analysis, design, and implementation phase.

In the analysis phase we will conduct an examination of existing programming
languages to help identify the parts of DOGS, which will result in an assessment of
language design criteria.

The design criteria from the analysis direct our design choices which will influence
the language syntax, type system, and semantics. As a SPO-project, the choice of
providing a formal semantics for DOGS is not a requirement, however we judge it
more valuable to the implementation than an informal specification, thus aiding us
in the development of the compiler.

Developing dogsc forces us to consider the choice of virtual machine, compiler-
compiler tools, and related tree traversal patterns. The choice of virtual machine
depends on considarations regarding portability (i.e. how widespread it is), among
others. The choice of compiler-compiler tool is dependant of the classification of the
DOGS language which also affects the choice of traversal pattern.

1.5 Target Audience

The target audience of DOGS is people studying (graph) algorithms in general, e.g.
students following the course Algorithms and Data Structures. As such, the main
purpose of DOGS is to provide these students with an easy-to-use programming
language for implementing algorithms from pseudo-code. Although it is the inten-
tion that the language will be somewhat specialized, it should still provide enough
language orthogonality to allow creation of all-purpose programs.

16

Chapter 2

Applied Graph Algorithms

Adhering to the Problem Definition, we will in this part of the analysis discuss the re-
quirements for developing a programming language with native graph support. This
involves a formal presentation of essential graph terminology as well as a discussion
of the ways to represent graphs, followed by a presentation of Dijkstra’s Algorithm,
which will help us identify required language functionality.

2.1 Introduction to Graphs

A graph G(V,E) is a structure consisting of a set of vertices V and a set of edges
E. An edge is a connection between a pair of vertices u, v ∈ V , and we will use the
notation (u, v) for such. An edge can have orientation, which means that (u, v) 6=
(v, u). If an edge does not have an orientation, the two edges (u, v) and (v, u) are
considered to be the same edge.

2.1.1 Types of Graphs

It is important that our language supports a fundamental variety of graphs in order
to aid the programmer in working with graph-related problems. Therefore we will
present the different types and formalize them in definitions based on [Ros03]. Note
that since the subject of this project is not the study of graphs, we will not discuss
their formal definitions in greater detail. However, we believe it necessary to outline
precise definitions rather than just informally describe the different types since they
indeed are the subject of our programming language.

The simplest type of graph is the undirected graph, which means that the edges
do not have an orientation.

Definition 1 (Undirected graph). An undirected graph G(V,E) consists of a set
vertices V and a set E of unordered pairs of elements of V called edges.

This type does not suffice when working with problems that require the use of
multiple connections or relations between a pair of vertices. Such graphs are known
as undirected multigraphs. An undirected multigraph is shown in Figure 2.1.

The aforementioned types of graphs will suffice when the programmer does not
need other information regarding the relations between vertices, other than knowing

17

2.1 Introduction to Graphs 2. Applied Graph Algorithms

..............
...........
..........
.........
........
........
........
........
........
........
.........
.........
..........

............
..

...........
..........
.........
........
........
........
........
........
........
.........
.........
..........

............
..

.............
.............
.............
.............
.............
.............
.............
.............
...

.................
..................................

..
.............
........
.........
..............

..
..........
........
.

........
.........
..............

..
..........
........
.

........
.........
..............

..
..........
........
.

.........
..............

..
..........
........
.

........
.........
..............

..
..........
........
.

e8

e3

e4

e7

v5

e2 e6

v4

v3

v2

e5e1

v1

Figure 2.1: An undirected multigraph

which vertices are connected. If he (or she) needs information about how the edges
are oriented, directed graphs need to be introduced.

Definition 2 (Directed graph). A directed graph G(V,E) consists of a set of
vertices V and a set E of ordered pairs of elements of V called edges.

A directed graph is shown in Figure 2.2. This type of graph can also be ex-
tended to directed multigraphs, in which multiple edges with the same orientation
are allowed.

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...................
...............

...
...

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
....................
...............

..
...

........
.........
..............

..
..........
........
.

........
.........
..............

..
..........
........
.

........
.........
..............

..
..........
........
.

........
.........
..............

..
..........
........
.........

.........
..............

..
..........
........
.

e2

e5
e4

e3

v2

e1

v1 v3

v4

v5

Figure 2.2: A directed graph

In many problems represented by graphs, it is necessary to have a set of values
(called weights) assigned to each edge in the graph. A graph where all edges are
assigned weights is called a weighted graph. An undirected, weighted multigraph is
shown in Figure 2.3.

Definition 3 (Weighted graph). A weighted graph G(V,E) can either be an undi-
rected or a directed graph, with the addition of a weight function w(e), that for each
edge e ∈ E assigns a set of values. Each edge must be assigned the same number of
weights.

The values assigned by the weight function are often integer values, but can in
theory be any type of value depending on the problem the graph is used to represent.

18

2. Applied Graph Algorithms 2.2 Dijkstra’s Algorithm

..............
...........
..........
.........
........
........
........
........
........
........
.........
.........
..........

............
..

..

........
.........
..............

..
..........
........
.

........
.........
..............

..
..........
........
.........

.........
..............

..
..........
........
.

........
.........
..............

..
..........
........
.

27

239

8434467

v1 v3

v4v2

Figure 2.3: An undirected, weighted multigraph

Note that in some graph algorithms, values are also assigned to the vertices of the
graph (often referred to as the state or colour of the vertex).

Graphs can be divided into several more subcategories. For example, we often
differ between graphs allowing loops and graphs that do not allow loops (that is,
edges of the type (v, v)). However, we do not deem it necessary to present more
definitions in this section, as those presented are enough to analyse implementation
of general types of graphs.

2.1.2 Representation of Graphs

There are several ways to represent graphs [Ros03], two of which are considered to
be the standards. One way is as a collection of adjacency lists and the other is as
an adjacency matrix.

The adjacency list representation of a graph G(V,E) consists of an array with a
list for each vertex in the graph (e.g. an array of |V | elements). Each of these lists
contain the adjacent vertices to the respective vertex. The adjacency list represen-
tation is often preferred when working with sparse graphs (e.g. a graph G(V,E) for
which |E| < |V |2), because it gives a compact representation of these. Compared
to many other ways of representing graphs, the adjacency list uses less memory to
represent a graph.

The adjacency matrix representation of a graph G(V,E) consists of a |V | × |V |
matrix A = (aij) such that:

aij =
{

1 if the edge (i, j) ∈ E,
0 otherwise.

This representation can be preferred, because it can be determined if there is a
connection between two vertices in constant time. This property comes at the cost
of the additional memory needed for the presentation (compared to adjacency lists).

2.2 Dijkstra’s Algorithm

In this section we present Dijkstra’s Algorithm. There are several reasons for in-
troducing such an example. One is to illustrate the pseudo-code from [CLRS01],
which has motivated for developing a language for working with graph algorithms.
Also, the example can be referred to in later sections when pointing out some gen-
eral characteristics in graph algorithms. Finally, we will use it after the language
implementation to test for correctness of the compiler.

19

2.2 Dijkstra’s Algorithm 2. Applied Graph Algorithms

Dijkstra’s Algorithm is used to find the shortest path in graphs and it works on
weighted graphs where a weight function assigns a single positive real number to
each edge in the graph. The weights represent the distance between two vertices,
thus the problem of finding the shortest path from a vertex a to all other vertices
corresponds to finding the sequence of edges from a to the other vertices for which
the sum of weights are minimal.

In this context it is not important to discuss why the algorithm always suc-
ceeds in finding the shortest paths, but to understand the pseudo-code below, some
explanation of central parts of the algorithm will be given.

1 Dijkstra (G , w , s)
2 for each vertex v ∈ V [G]
3 do d[v]←∞
4 π[v]← NIL
5 d[s]← 0
6 S ← ∅
7 Q← V [G]
8 while Q 6= ∅
9 do u← Extract−Min (Q)

10 S ← S ∪ u
11 for each vertex v ∈ Adj[u] and v /∈ S
12 do i f d[v] > d[u] + w(u, v)
13 then d[v]← d[u] + w(u, v)
14 π[v]← u

Listing 2.1: Dijkstra’s Algorithm written in pseudo-code

The algorithm takes the graph G, the weight function w, and the start vertex s
as input. The algorithm makes use of a table d[v] to store the distance from s to a
vertex v, and a table π[v] to store the predecessor to a vertex v. The predecessor
u to a vertex v is the vertex from which v can be reached by the distance d[v] at
a path from s to v. The algorithm uses a set S to store the vertices for which the
distance d[v] is the actual distance of a shortest path from s to v. Furthermore, a
min-priority queue of vertices Q is used in which the vertices are prioritized with
respect to their d values.

In each iteration of the while loop the vertex with the least value in d is extracted
from Q and stored in the variable u. This vertex u is added to the set S, and for
all vertices v adjacent with u and not already in S, the values d[v] are updated, if
the vertex can be reached by a shorter distance by using the edge (u, v) than the
distance value already in d[v].

The loop terminates when Q is empty. In this case all vertices have been added
to the set S. Since S contains the vertices for which the value d[v] is the distance of
a shortest path from a to v, the algorithm has found the shortest distance from a to
all other vertices in the graph.

The shortest paths have also been found and can be constructed by backtracking
in the predecessor table π.

20

2. Applied Graph Algorithms 2.3 Early View of the Language Requirements

2.3 Early View of the Language Requirements

The presentation of Dijkstra’s Algorithm gives us the opportunity to reflect on some
of the requirements or our language. We can identify the need of primitives, i.e.
numbers. These are completely essential, confer line 5, for instance. Symbolic values
such as sentinels from line 3 are also needed. Further, we can see that conditional
branching (identified in lines 12 to 14) and loops (identified in line 8) are necessary
in order to make decisions from a series of choices and to iterate over, say, a set,
respectively. In this context, boolean algebra is also required to maintain loops, to
choose between different conditions, to make comparisons, etc. Data structures such
as sets (cf. line 6), queues (cf. line 7), and lists are also required. In the next
sections, we will analyse the needs of the following requirements more thoroughly:

• Primitive data types

• Composite data structures

• Arithmetic and boolean expressions

• Control structures

• Input and Output structures

• Concurrency

• Mutual exclusion

• Packages/libraries

• Error handling

Summary

This chapter has served multiple purposes. A basic introduction to graph terminol-
ogy has been the offset to understand what a graph really is and further to discuss
how to represent graphs. Dijkstra’s Algoritm has been presented in pseudo-code to
help illustrating the syntax of our language, and furthermore it has given us the
opportunity to reflect on the requirements of our language.

21

Chapter 3

Analysis of Language Features

In the previous section we ended up with a list of identified requirements that we
need to assess the necessity of when designing our language. In this chapter we will
walk through features available in the four languages: ANSI C, Turbo Pascal, Perl,
and Python1. The reason for doing this is to take advantage of the way others have
build up a programming language, its features and to take advantage of experiences
with those languages.

We will examine how data types are represented and which are provided in the
four languages. We will also discuss how the languages provide operations on these
data types and the possibility of creating special needed data types, e.g. structures
i C.

Furthermore, we will evaluate on how to create control structures and which
impact these have on the languages as well as discuss language features like in-
put/output, concurrency, error handling, and language extensions.

3.1 Primitive Data Types

Not all programming languages have primitive data types, in fact both Python and
Perl do not have the primitive data types that C has. In C and Pascal, numbers are
represented by integers and reals. When working with integers in C the programmer
can either have them signed or unsigned in order to represent negative or only positive
numbers. This is, however, not possible in Pascal. In C it is also possible to represent
integers in different sizes, ranging from byte to long.

To represent real numbers in C the types float and double are provided, differ-
entiating in how large the representation of the real is.

C does not have a primitive data type to represent strings, it only has represen-
tation for a single character, char, so in order to work with text strings in C the
programmer has to represent these by an array of single characters. This is very
different from Pascal where the primitive data type string is provided, which has a
size limit of 256 characters.

The type boolean in Perl and C is represented by zero and one, however C
accepts any positive non zero integer as true. Python, however, uses both of the
previously mentioned and the use of the keywords True and False. Additionally,

1From now on ANSI C will be referred to as C and Turbo Pascal as Pascal

22

3. Analysis of Language Features 3.2 Composite Data Types

both Python and Perl allow any data type to be evaluated as a boolean, e.g. an
empty string is false, while any non-empty string is true. The boolean in Pascal is
manipulated by the keywords true and false.

The most commonly known representation for sequencing is probably the primi-
tive static sized array as it is known from C. In Pascal, the array works in the same
way as in C, but when initializing it the programmer has to specify the size as a range
of either chars or integers. However, Perl and Python provide support for sequences
on a higher level of abstraction. In both Python and Perl, strings, integers, and reals
are represented by only one type, scalar, that can contain any of the types.

In fact, both Python and Perl only have few dynamic sized basic types. Besides
scalars Perl has arrays and hashes, while Python has lists and dictionaries, which
basically are somewhat the same. Python has an in-mutable data type called tuple
in addition.

Dijkstra’s Algorithm uses numbers to represent the cost of a weight and the
distance to a given edge. If efficiency is of the essence, many different primitive
representations of numbers, like the ones C or Pascal provide, may be useful to cut
down on memory usage. However, if efficiency is not very important, perhaps the
representation of a number can be minimized to one type, the real, as is the case in
Perl and Python.

Similarly, when deciding upon the need of sequence structures, if resources and
efficiency is important, a static basic type, like the array, is preferable. If, on the
other hand, the language should allow high-level abstraction of the operations on
sequences, a dynamic representation may be preferred.

3.2 Composite Data Types

Composite data types are constructs that allow the programmer to form a new data
type from primitive data structures and composite ones.

In C, this is done by the keywords struct and union, which behave in the same
way, but union declares a variable, which is composed of primitive data types, instead
of a structure. Below is presented a small example of how one could represent an
edge with a name (only one character) and a state (an integer) with a struct.

1 #include <stdio . h>
2
3 struct vertex{
4 char name ;
5 int state ;
6 } ;
7
8 int main (void) {
9 struct vertex a ;

10 a . name = ’A ’ ;
11 a . state = 10;
12
13 printf (”Name: % c\ tS ta t e : %d\n” , a . name , a . state) ;

23

3.3 Arithmetic and Boolean Expressions 3. Analysis of Language Features

14 }
Listing 3.1: Working with structs in C

In lines 3 to 6 we declare the stucture, in line 9 we initialize it, and in lines 10
and 11 we initialize the members of the structure. Line 12 references each of the
members in the structure and prints them. A pendant to this is Pascals records
and Pythons use of object-oriented classes (also present in Perl to some extent). C
and Pascal also support declaration of enumerations with the keywords enum and
type.

Many graph related types cannot be represented with primitive data structures,
so in order to allow the programmer to create any composite types, the language
must provide some kind of composite data structure declaration. An example could
be the representation of a tree, for instance. A tree is a collection of nodes and edges,
which cannot be modelled with primitives.

3.3 Arithmetic and Boolean Expressions

Some of the different arithmetic and boolean expressions used in the four languages
have been examined and in we have listed the arithmetic operators that three of
them share in Table 3.1.

Operators Description
+, − plus, minus
∗, / Multiplication, division
% Modulo
<, <= Less than, less than or equal
>, >= Greater than, greater than or equal
= Assignment
==, ! = Equal and not equal

Table 3.1: Shared arithmetic operators from the three languages Perl, Python, and
C

The arithmetic operators in Pascal are not included in Table 3.1 because some
operators in this language differentiate from those of the other languages. In Pascal,
assignments are done with := , ! = (not equals) is done with <>, and for the
== (equals) expression Pascal provides a single = character. Furthermore, when
working with modulo in Pascal, the programmer has to use the mod keyword. This
also applies when division should return an integer instead of a real. In this case,
the programmer has to use the keyword div.

Besides from arithmetic expressions the languages also have logical expressions
and these are as well implemented in two different ways. Perl, Python, and Pascal
provide the written notations OR and written AND for mathematical ∨ and land. In
C, it is only possible to use the logical expressions && for ∨ and || for ∧. This
notation is also available in Perl.

The languages also have a set of different bitwise operators, listed in Table 3.2.

24

3. Analysis of Language Features 3.4 Control Structures

Operators Description
& Bitwise AND
| Bitwise OR
^ Bitwise exclusive or, XOR
<< shift left
>> shift right

Table 3.2: Bitwise expressions

We have discovered that both Perl, C, and Pascal have the increment ++ and the
decrement −− expressions, but Python has not. This seems a bit strange because
this is the only high-level language that we know of that does not support these
operators.

All of the arithmetic expressions in this section can be used to make true/false
evaluation. To represent the evaluation of this expression the boolean data type is
provided (described in Section 3.1).

Pascal and Python further provide the keyword not instead of the negation sym-
bol !, which is used by the two other languages.

Programming algorithms becomes a tedious task if the language is lacking arith-
metic expressions to make calculations and evaluations of these. Conferring Dijk-
stra’s Algorithm from Section 2.2 it is clear that arithmetic expressions are used
throughout Dijkstra’s Algorithm to do evaluations and calculations.

In order to reach a high level of abstraction, the increment and decrement opera-
tors are needed. Also the written OR and AND operators give a programming language
a higher level of abstraction than just using the logical operators, thus increasing
readability of the code.

3.4 Control Structures

In the mentioned four programming languages there are three different types of
control structures: looping, branching, and recursion. In the following, we will use
the notations:

• <expr>: is a logical expression.

• <block>: is a collection of one or more statements.

• <iass>: is an integer assignment.

• <int>: is an integer value.

All four languages support conditional branching, using the if...then...else
structure, which can be nested arbitrarily.

Recursion (a function calling itself within itself) is allowed in all four languages,
however in Python it is limited to an implementation dependent recursion depth.

25

3.4 Control Structures 3. Analysis of Language Features

3.4.1 Loops

Loop structures execute code inside a block while an expression is evaluated to
either true or false. The loops can be manipulated by the keywords break and
continue/next.

C provides the following loop structures:

• while <expr> <block>

• do <block> while <expr>

• for (<init>;<expr>;<block>) <block>

The while structure is common in all four languages and is a common feature in
most imperative programming languages.

When working with loop structures in Pascal we have the following unique struc-
tures compared to the other three languages:

• repeat <block> until <expr>

• for <iass> to <int> do <block>

Perl provides a very wide range of control structures and many of them work
in the same way. All the loop control structures in Perl that are not in C is listed
below.

• until <expr> <block>

• do <block> until <expr>

• unless <expr> <block>

• for var (array) <block>

• foreach (array) <block>

The do...until loop in Perl works in the same way as the repeat...until loop in
Pascal. The for and foreach differentiate from the other loop structures because
these iterate over a sequence rather than an evaluation of an expression. The latter
was presented in Listing 1.4, page 14.

Besides while, Python only provides one looping structure which is the for
<target> in <iterable> seen in Listing 1.5 in Section 1.5, page 14. It declares
a variable, the <target>, which can be used inside the loop. To allow this, the
<iterable> is an object that can be iterated over which is lists and strings. In
order to iterate over an indexed array, we would have to create a sequence to iterate
over: for i in range(0,10).

Adhering to Dijkstra’s Algorithm we can identify the conditional branching and
for each structures. Conditional branching is widely used in algorithms and a
necessity in an orthogonal programming language. The for each expression can
be represented by a construct similar to Perl’s foreach and Python’s for...in....
The latter has a cleaner syntax, though.

26

3. Analysis of Language Features 3.5 Input and Output

There is a wide variety of looping structures available but in order to satisfy
minimal needs, all a language really needs is for... and while... constructs,
however specialized constructs like repeat...until can sometimes be useful.

A tree is a special, recursive-structured type of graph and when working with
it, recursion provides expressive solutions. Further, when working with sets and
sequences it is useful to create divide-and-conquer algorithms, which are recursive.

3.5 Input and Output

There are many aspects in the use of input and output, e.g. printing to a console,
persisting data, etc.

All useful languages support input and output. C, Perl, Python, and Pascal are
no exceptions.

The way to handle input and output is through streams which is a data queue.
A stream could contain the keys pressed on the keyboard or the data read from a
file. The way a stream is handled is the programmer’s responsibility and would often
be by characters in the stream. When managing input and output in this way it
would be easy to let networking communication work in the same way, letting two
applications exchange streams with data.

The usefulness of a programming language is drastically reduced if it does not
support input and output. Running, for instance, series of tests of finding the shortest
path in a graph would amount to a limited use if the data cannot be persisted.
Further, if the results cannot be printed the test would be worth very little.

3.6 Concurrency

When working with concurrency we distinguish between processes and threads. A
program normally runs in one process, which can have one or multiple threads.
Sometimes it has the need to spawn extra processes, which often need to share
ressources.

Python, Perl, and C fully support concurrency, while Pascal does not support it
at all. C, Perl, and Python provide two different methodes to handle concurrency:
The fork statement that spawns a new process, which is a copy of the original
process (the new process continues from the state where it was forked) and multiple
threads inside a single process, which share resources.

In C, forks from the system library <unistd.h> are used to spawn a new process.
Threads are provided in the system library file <pthread.h>. Python has the
same constructs in the packages os.fork, thread, and threading which is built on
thread. Perl needs the module Thread.pm which is to be installed separately.

3.6.1 Mutual Exclusion

Sharing resources between a number of processes and threads is problematic. To
avoid two threads modifying the same data, certain controlling mechanisms can
be introduced. One commonly known is semaphores which both Python, Perl,

27

3.7 Error Handling 3. Analysis of Language Features

and C support. C provides them in <semaphore.h> and Python has the class
semaphore. In Perl semaphores are provided in the IPC::SysV, IPC::Semaphore,
and Thread::Semaphore packages.

When working with an application that is performing some kind of calculation
and at the same time needs input from the user, the language in question needs to
support concurrency, e.g. threads, if the application should continue to calculate
while recieving input.

If two or more applications need to communicate and exchange data at runtime,
the need for concurrency seems obvious. This could be two computers working
with the Travelling Salesman Problem, which exchanges individuals between their
populations.

So, concurrency is needed to interact without halting the entire application.
When making a new language it is one of the fundamental things to include in
order to make the language useful.

3.7 Error Handling

Errors are often handled by the operating system, e.g. division by zero and pointers
to invalid or forbidden resources. When designing a programming language it is a
matter of design choice whether to let the language handle errors explicitly or leave
it to the operating system. The latter is the case in C [KR88].

However, many C compilers check for many errors at compile time in order to
avoid these. The Gnu Compiler Collection (gcc), for instance, checks for division by
zero if a number is divided with zero. Though, if a variable of type integer is declared
and its value is assigned to zero later in the program, it is left to the operating system
to handle the situation where division by this variable is executed.

Like the gcc compiler, the Perl interpreter performs some checks before executing
the source code at runtime. If an error occurs at runtime it is left to the operating
system to handle the situation.

Pascal performs compile time checks and has a mechanism that raises a runtime
error description at runtime.

Unlike the other languages being examined Python has a rather large scheme for
detecting errors called exceptions (see [Mar03]).

If an error is detected an exception is raised and Python, like Java, allows the
programmer to explicitly raise exceptions and handle them. As Python is an inter-
preter it does not, in contrast to Perl, perform checks before executing the source
code.

An error detection scheme is an important part of a language. Debugging C
programs, for instance, can be very time consuming, especially when the errors are
related to memory access and pointers.

Bearing in mind the target audience of our programming language, it would be
worthwhile to consider having graph related runtime error checking. One possible
graph-related error could be negative cycles in a weighted graph with negative edges.
A solution to this could be to have a feature in the compiler that checks for negative

28

3. Analysis of Language Features 3.8 Extensions

cycles. Another graph-related error could occur if the programmer defines a weighted
graph that has multiple weights on each edge and the amount of weights on an edge
differs from another edge. This can also be checked at compile time but would slow
down the compile process, so obviously there is a tradeoff.

3.8 Extensions

In large programming tasks, or in distribution of code to other programmers, it is
convenient to have some kind of technique to extend and reuse code. To provide this
in a programming language, some kind of extension system will be usable.

In C, extensions are created by making files called header files. These are used
to link a group of source files into a library. The header file is used to declare
all functions from the different source files. Inside each source file the header file
is included by using the #include <package.h> statement for standard packages
and #include ‘‘package.h’’ statement for user-defined libraries.

The package system in Pascal is similar to C’s, except there is no header file
for declaration of the functions or procedures because these are declared inside the
source file. In top of a file that relies on the use of functions from a library file, the
uses unit-name statement is used.

In Perl, the programmer has the possibility to make modules as an extension.
The modules are very different from the way C libraries are build. A Perl module
consists of a single file only, with the possibility to use other modules with the use
<module-name> statement. This is in contrast to C where a library commonly
consists of a collection of files.

The Python module system is similar to Perl’s, except from the fact that in
Python a package can be made as a collection of modules. The inclusion of these
modules is done by using the import module-name from package statement.

Another language worth considering is Java, as it has an interesting mechanism
for handling language extensions. Like Python it operates with classes, packages and
it is executed through an interpreter. The java compiler compiles all needed class
files, which allows good modular structure.

When working with a problem and an algorithmic solution has been found, it
would be practical to provide an easy way for the programmer to distribute the
solution to other programmers and end users. This would be convenient to support
directly in the language as it is seen in the four languages from the previous section.

Summary

The inspection of C, Pascal, Perl, and Python has given us insight into what is
required in a language being developed. Some of the requirements are more obvious
than others, e.g. arithmetic and boolean expressions against packages and error
handling, although this is dependant of what the purpose is with the language.
Since DOGS is to be a language with native graph support for students there are
clearly different priorities in the selection of requirements. Though, before we start

29

3.8 Extensions 3. Analysis of Language Features

evaluating these we will examine which paradigm to choose, as this also affects our
decissions in the design.

30

Chapter 4

Programming Paradigms

When designing our programming language, we need to decide which programming
paradigm to follow. This decision will be based on an analysis of the four main
paradigms, which we will present in the next sections. We will discuss the pros and
cons of these four paradigms and weigh them against our goals from the Problem
Definition as well as make an assessment of the consequences of choosing between
them.

4.1 The Four Main Programming Paradigms

There are four main programming paradigms [Nør]: The imperative, the functional,
the object-oriented and the logical paradigm, each different from the others. In the
following they will be introduced and assessed in relation to the requirements of this
project. The following is based on [Nør] and [Wik].

4.1.1 The Imperative Paradigm

Informally, in the imperative programming style a program consists of a sequence
of computational steps, or commands. The execution of these commands, which
happens in an order governed by control structures, brings the program into a new
state defined by the contents of the memory.

This rather abstract description of the imperative paradigm is presented because
Dijkstra’s Algorithm from Section 2.2 is presented in an imperative pseudo-code.
Here we see control structures in form of loops and changes in state in the form
of assignments. In fact, all of the graph algorithms from [CLRS01] and [Ros03] are
presented in imperative pseudo-code, which is one of the main reasons for considering
this paradigm. Also, everyone in the group has had experience in programming in
this paradigm before, so we can focus on other project-related problems instead of
learning a new paradigm which could be a time-consuming process. Further, the
semester course “Programming Languages and Compilers” that are concerned with
the development of programming languages and compilers, uses this computation
model in concrete design and implementation examples. These are the main reasons
for choosing the imperative paradigm.

31

4.1 The Four Main Programming Paradigms 4. Programming Paradigms

4.1.2 The Functional Paradigm

In contrast to imperative programming, functional programming is based on evalu-
ation of functional expressions, not on execution of commands.

In our considerations of this paradigm we have to take into account the fact
that practically all members of the group have had limited experience in functional
programming and absolutely no experience in programming logical, which means
that a possibly time-consuming process of learning to program in one of these two
paradigms is unavoidable.

According to [Mit03], imperative languages are more commonly used than func-
tional languages. Therefore, it could be argued that due to previous programming
experience, chances are that the target audience (cf. Section 1.5) of DOGS will be
more familiar with the imperative paradigm than the functional one.

4.1.3 The Logical Paradigm

In short, logical programming is based on axioms, inference rules, and queries. Exe-
cution of a program is a systematic search in a set of facts with the use of inference
rules.

We have already discussed the logical paradigm to a certain extent in the previous
section where some of the argumentation against using this paradigm is presented.

[Mit03] states that this paradigm restricts a language to only one data type.
This restriction is unwanted in our programming language so this argument is rather
strong against choosing this paradigm.

When considering the fact that logical programming describes to the computer
a set of conditions and lets the computer figure out how to satisfy them, it could
be argued that this computation model will not be optimal for working with graph-
related problems where the programmer often knows what the problem is and how
to reach the solution in a number of steps.

4.1.4 The Object-Oriented Paradigm

Finally, one could argue that it would make sense to perceive a graph as an object
and that the object-oriented paradigm therefore should be followed. However, there
is more to this paradigm. A purely object-oriented approach would be a program-
ming language with native support for inheritance, encapsulation and polymorphism.
Without a doubt, all these properties could probably be used with success in DOGS,
but conferring the Problem Definition in Section 1.2 yet again, it can be argued
that these properties are beyond the scope of this language development. In other
words, it could be questioned whether these object-oriented mechanisms will provide
indispensible assistance to us or not. At any rate, this will be more clear in Chapter
5 where we present our design criteria. From these, we will be able to make this
assessment.

One of the arguments in favor of following the object-oriented paradigm is that
all members of the group have relatively much experience in this programming style.

32

4. Programming Paradigms 4.1 The Four Main Programming Paradigms

Summary

In this section we have presented and discussed the main programming paradigms.
The goal of this is to qualify the group in making a decision about which paradigm
to follow when designing the language. This should also be easier when the design
criteria will be presented.

33

Chapter 5

Language Evaluation Criteria

Our brief research of C, Pascal, Java, and Python has shown that none of these
languages support graphs in an intuitive fashion. Adhering to the Problem Definition
one of the two goals of this project is to develop a programming language that will
natively support working with graphs and graph algorithms and further to include
a comprehensible and intuitive syntax. This choice reflects a requirement of high
readability.

In this chapter we will be concerned with an evaluation of design criteria that
applies to our language. It will be based on the research done to this point in the
analysis process and form the base of the design.

5.1 Criteria Assessments

Table 5.1 shows the design criteria and how they are rated in relation to one another.
The argumentation for the ratings are given from how the criteria are defined (i.e.
how we grasp the meaning of them) below.

Criterion Very important Important Less important Not important
Writability X
Readability X

Orthogonality X
Reliability X

Maintainability X
Generality X
Uniformity X

Extensibility X
Standardability X
Implementability X

Efficiency X

Table 5.1: Design Criteria for DOGS (the criteria are from [WB00] and [Seb04])

• Writability: This criterion describes how easily and quickly the programmer
can express algorithms in a language. We have rated it important as we want

34

5. Language Evaluation Criteria 5.1 Criteria Assessments

the user of our language to be able to write all kinds of graph-related algorithms
in a concise and intuitive syntax. However, we have decided that readability is
more important, and therefore more code to perform a computation is preferred
if it can improve readability.

• Readability: Readability is a measure of how easy a piece of code in a lan-
guage is to understand by people other than the original programmer. One
of the goals in this project is to design a language with a syntax that leans
toward the pseudo-code from [CLRS01]. The purpose of writing pseudo-code
is to describe algorithms in an easily understandable way, thus we have rated
readability very important for our language design. Considering the target
audience, readability is also very important since students of algorithms often
need to share and discuss their written algorithms and therefore comprehensi-
ble code is preferred.

• Orthogonality: We have rated orthogonality (that many constructs in the
language can be combined in meaningful ways) important to support our crite-
rion of designing a language with high writability. However, since readability is
most important, our choices regarding orthogonality must not affect readability
in a negative way (too much orthogonality reduces the simplicity).

• Reliability: This characterizes that the constructs in a language do indeed
work as specified in the language definition. It is important in our language de-
sign that the language constructs will behave as intended and expected during
execution. Therefore, we have rated this criterion important.

• Maintainability: Our language is not designed for programming industrial
applications and therefore maintainability of programs written in DOGS is less
important. Hence, we have rated the criterion less important.

• Generality: A general language provides a few constructs that work in all
cases rather than a lot of specialized ones that each works only in a few situa-
tions. We have rated generality important, as we judge it important to provide
general language constructs to cover the programmer’s needs. This is preferred
as long as the use of these general constructs does not reduce readability of the
code, compared to the choice of having several specific constructs instead.

• Uniformity: We define uniformity as the degree of similarities between sim-
ilar constructs in the language. Two constructs with similar purposes should
behave in similar ways, thus making the language syntax easier to learn and
remember. Since this quality is related to the readability of the language it is
important to us to address.

• Extensibility: This property of a language describes whether the language,
by design, is easy to extend by either the original designer or the users. We
rated this as less important for two reasons, the first being that the language
has a well defined problem domain and we believe it to be reasonable that the
constructs provided will be adequate. The second reason is that the target
audience of our language is students with limited experience in the field of

35

5.1 Criteria Assessments 5. Language Evaluation Criteria

programming. Such people are unlikely to want to customize and extend their
language.

• Standardability: The standardability of a language is described as the ease
with which programs written in it on one platform can be made to run on other
platforms. This is a desirable quality in a language such as DOGS in that we
cannot expect our audience to be using a single platform and therefore we rate
it important, even though it is not something we wish to spend a lot of energy
on.

• Implementability: The degree of implementability that a language exhibits
is described as the ease with which it can be implemented to a given platform.
This is obviously important to us since the goal is to produce a working compiler
for a language. However, we have decided that this concern will not be allowed
to compromise the readability concern in our design.

• Efficiency: This measures efficency both in terms of running times and mem-
ory used. Considering that the target audience is students, it is less important
whether the programs produced is highly effective as more emphasis is placed
on learning and understanding.

36

Summary

The inspection of how to work with graphs in common programming languages
such as C, Perl, Python, and Pascal has revealed room for improvements, thereby
conveying a motivation for developing a language and compiler that support working
with graphs in a more intuitive way. The basis for this is a pseudo-code directed
syntax in the language.

Dijkstra’s Algorithm has been introduced as a frame of reference for us to iden-
tify elements needed in our language which entailed a survey of the aforementioned
four languages. Along with a discussion of which programming paradigm to follow
this more thorough inspection of C, Perl, Python, and Pascal has led to a table of
language criteria, which will be important in the design of DOGS.

37

Part II

Design Document

39

Introduction

The discussion of features in already existing languages in Chapter 3 resulted in
our design criteria in Table 5.1, page 34. We will begin the design phase by making
decisions based on this examination and argue for the choices made. This will happen
in Chapter 6.

The rest of the design phase will focus on designing DOGS. Chapter 7 intro-
duces the syntax of our language along with a description of how to understand the
production rules. In Chapter 9 we give an extract of the formal semantics of our
language. Before this, however, we discuss the type system of DOGS as it is required
in order for us to justify the semantics.

An abstract syntax is introduced in Section 8.4.1 on which the semantics is based,
followed by a discussion of our environment-store-model in Section 9.1. Subsequently
the semantics is introduced in Chapter 9 in form of a selection of transition rules
from different parts of the abstract syntax. The entire semantics can be found in
Appendix E.

40

Chapter 6

Design Choices

The idea of the language analysis from the analysis phase was to qualify us in making
reasonable and conscious design decisions. In the following sections we will present
our choices and account for these in relation to the analysis as well as to the language
design criteria from Section 5. This will document our language syntax which will
be presented in the following chapter along with an informal explanation of it, which
will prepare for the language semantics.

6.1 Programming Paradigm

The discussion from Section 4.1 concerning which programming paradigm to follow
when we design our language insinuates that the imperative paradigm is reasonable
to choose for our language. The reasons for designing in this paradigm included
already existing programming experience in it for everyone in the group and the
fact that the semester course “Programming Languages and Compilers” instructs in
language and compiler design in the imperative paradigm. Further, all the graph-
related algorithms we have been presented with are imperative which clearly aids
our target audience in converting the pseudo-code algorithms from paper to concrete
algorithms in our programming language. Any other paradigm would force a “re-
designing” of the graph algorithms. Thus, our choice of programming paradigm is
the imperative.

As has been stated in the paradigm discussion both the functional and object-
oriented paradigm do hold some attraction but using one of these will force the
programmer into a different mindset than that of graph-algorithm design. Basically,
the choice depends on our language design criteria (cf. Chapter 5). Recall that our
highest rated criteria is readability which is a measure of intuitive understanding of
the code. This intuitive understanding is based on the imperative pseudo-code from
the books.

6.2 Primitive Data Types

In Section 3.1, page 22, we identified the data types in the four languages being
analysed. The conclusion was that a range of different primitives was preferable if

41

6.2 Primitive Data Types 6. Design Choices

efficiency is of the essence. Adhering to our language criteria evaluation, efficiency
is not something we have rated high.

If we address readability in relation to data types it would make sense to include
only a few in order to keep it simple and intuitive since efficiency is not an issue. We
have chosen the types integer and float to represent numbers, boolean to repre-
sent truth values (denoted by true or false), and string to represent strings. As
regards graphs the types vertex and edge represent vertices and edges respectively.

Integers and floats are suitable because they make out the range of numbers
necessary when working with graph algorithms in particular. Standard arithmetic
operations append on both types (i.e. addition, subtraction, multiplication and
division) but also modulo and integer division on integers. The two types can enter
into the same expression without having a type clash, the responsibility for converting
between the types resides in the language (although it is not possible to perform
integer division on an integer and float). We will discuss the type system of DOGS
in Chapter 8.

In boolean expressions integers are always converted to floats before performing
comparisons. Again, the reason for doing this is that it levitates the programmer in
expressing pseudo-code from worrying about a strict type system.

We need primitives to represent graph-related types. vertex and edge make out
the foundation when working with graphs, hence they do not apply to arithmetic or
boolean algebra. Listing 6.1 illustrates how to create a graph in DOGS.

1 program graphConstruction ;
2
3 import graphToolkit ;
4
5 procedure makeGraph ()
6 l et
7 graph G ;
8 vertex v1 ; vertex v2 ; vertex v3 ;
9 edge e1 ; edge e2 ; edge e3 ;

10 in
11 begin
12 addVertex (G , ” a”) ;
13 addVertex (G , ” b”) ;
14 addVertex (G , ” c”) ;
15 v1 := getVertex (G , ” a”) ;
16 v2 := getVertex (G , ” b”) ;
17 v3 := getVertex (G , ” c”) ;
18 e1 := (v1 , v2) ;
19 e2 := (v1 , v3) ;
20 e3 := (v2 , v3) ;
21 addEdge (G , e1) ;
22 addEdge (G , e2) ;
23 addEdge (G , e3) ;
24 .
25 .

42

6. Design Choices 6.3 Operators

26 end

Listing 6.1: Constructing a graph from vertices and edges in DOGS

In the let-in block we declare a graph G followed by the declaration of vertices
and edges. A set containing strings are then declared and the standard function
(i.e. from the Standard Environment, cf. Section 7.4) addToSet(graph G, string
identifier) is invoked in order to add three strings to the set.

In the body of the procedure the set V is connected to the graph G. Subsequently,
the three declared vertices get connected to G and identified each by one of the
strings from the set V using the standard function getVertex(graph G, string
identifier). This is followed by the initialization of the edges which are then
connected to the graph G by invoking addEdge(graph G, edge e).

6.3 Operators

In Section 3.3 we inspected a range of arithmetic and boolean operators from C,
Perl, Python, and Pascal. Judging by the goal of DOGS being able to express a
wide range of (graph) algorithms there is a need for a range of both arithmetic and
boolean operators in DOGS, and in this section we will present the operators that
are to be a part of the DOGS language.

A list of these operators is provided in Table 6.1 along with their respective
associativity and their relative precedence.

Operators Associativity
() Left to right
& Right to left

* / div mod Left to right
+ - Left to right

< <= > >= Left to right
= <> Left to right

not Left to right
and Left to right

or xor Left to right

Table 6.1: Precedence of operators in DOGS

It may be noted that the precedence rules are mainly based on the rules for C
and Perl. The operators in the top of the table have the highest precedence and the
operators in the bottom have the lowest precedence.

6.4 Composite Data Types

Consulting the summary in Section 3.1 we have to decide upon the need for static
sequence structures (arrays, that is) and dynamic sequence structures (e.g. sets).
Of course, considerations can be based on efficiency but in our case it is relevant to
consider the need from a graph-point-of-view and from a more general programming
view. Basically, both arrays and sets provide a convenient way to keep a collection

43

6.4 Composite Data Types 6. Design Choices

of data for different purposes, for instance to iterate over. We have included both
types of sequence structures.

Sets allow for a high-level abstraction on the operations on sequences, thus fulfill-
ing our readability criterion. Although dynamic, they are limited to hold data of one
type only. This is a choice we have made based on the fact that mathematical sets
contain a certain type and we have judged this restriction meaningful in regards to
graphs. Further, sets only allow for one instance of each value (i.e. no sequence with
a representation of a value, say, 5 or vertex v1 more than once) which also makes
sense because they primarily will be used to collect vertices and edges (cf. Listing
6.1 in the previous section), the former will typically be used to iterate over:

foreach vertex in V do . . . //V is a set

To allow for more advanced constructs we will include records with the record
construct. The record types are constructed from a number of fields of other types
(which can be both primitive types, graphs and other records, but not functions or
procedures). Together with the primitive types we judge that these types suffice in
that the selection of primitive types is easily comprehensible and as such facilitates
readable DOGS code, whereas the option to use structures gives programmers in-
creased power in both expressibility and abstraction. Together with reference types
(which will be described shortly) the inclusion of structures also allows for the con-
struction of abstract data structures such as queues, trees, and lists.

A record can be declared in the following way:

1 program records ;
2
3 record rec integer x := 0 ,
4 boolean b := false ,
5 f loat f : = 0 . 0 ;
6
7
8 procedure makeRecord ()
9 l et

10 rec r := { x := 2 , b := true } ;
11 in
12 begin
13
14 end

Listing 6.2: Records in DOGS

Note that records are declared outside a let-in block. This is reasonable because
records represent types that may need to be globally accessible to the programmer
and it increases clarity and readability to restrict the declaration of user-defined
types in the global scope. Instances of already declared record types can then be
declared in a local scope (cf. Section 6.6 for declaration of variables and constants
and Section 6.9 for scope rules).

44

6. Design Choices 6.5 Variable References

6.5 Variable References

In addition to the types mentioned in the previous sections, DOGS will also support
reference variables, however only as parameters to functions and procedures. The
reason for this limitation is that we find the use of pointers only in the call-by-
reference mechanism the most safe and intuitive way to include them. For instance,
if we pass a reference a to a procedure and this reference is assigned to a variable
b in the body of the procedure, how should we then decide what a refers to? The
value of the variable b, or will the value of b be stored in whatever a was referring
to before the assignment?

Again, if we confer the readability criterion we want to let procedures and func-
tions work the same way every time used. This is done by explicitely noting in the
procedure- or function declaration block that a variable is just a reference to the
variable used when calling, which is denoted by the ref keyword. This is in contrast
to C where the programmer also has to note the parameter as a pointer, e.g. when
calling a function. This way there will be no difference in the way a procedure or
function is working on the given variables from time to time, hence welcoming our
readability criterion.

6.6 Declaration of Variables and Constants

Before using a variable in DOGS it has to be declared in a block, just before the
body of any function or procedure. The idea of having a block where declarations
are collected originates from pseudo-code where declarations are somewhat secondary
and almost never presented. In order to make the code resemble pseudo-code we have
decided to force the programmer to declare variables in a let-in block similar to
Pascal’s and Triangle’s [WB00].

1 program variableDec ;
2
3 procedure emptyProc ()
4 l et
5 boolean listening = true ;
6 integer x := 0
7 f loat y : = 0 . 0 ;
8 in
9 begin

10
11 end

Listing 6.3: Variable declarations in DOGS

Another reason for making this the only place to declare variables is to make it
easy to get an overview of those variables available inside the function or procedure.
Thus, it is not possible to declare variables inside any nested block inside a function
or procedure body because this would make it harder to get an accumulative survey
of all the variables.

45

6.7 Control Structures 6. Design Choices

In some ways constants are similar to variables, although it is not possible to
change their value once set. Furthermore, the constants are not limited to be de-
clared just for a function, but can be declared in every file for use in every function.
This could be used advantageously for a package with mathematical constants, for
instance. We use the keyword constant to denote a constant in DOGS. They can
be applied globally by declaring them outside the let-in blocks in the top of the
file or locally inside a let-in block:

1 program constantDec ;
2
3 constant int speedOfLight := 299792458 ;
4 constant string homerSimpson := ‘ ‘ doh ’ ’ ;
5
6 procedure emptyProc (int argNumber)
7 l et
8 constant f loat pi = 3.14159 ;
9 in

10 begin
11
12 end

Listing 6.4: Constant declarations in DOGS

6.7 Control Structures

In Section 3.4 we considered three kinds of control structures: recursion, branching,
and iteration. We have decided that the exclusion of any of those would severely
hamper the writability of programs written in DOGS. Also, many graph related al-
grorithms yield for a recursive solution. Following this argument we have opted to
include recursion in our language as a means to make functions able to call them-
selves. This will be discussed in Section 6.8.

In regards to branching we have chosen to include the common if. . .then. . .else. . .
construct. This construct is a part of each of the languages we have examined and
we find it easily understandable. Hence, this choice is in accordance with our goal
of readable programs. As for iteration we have selected six constructs, two of them
similar to C’s:

• do. . .while. . .

• while. . .do. . .

These two constructs will execute a command while a condition is true, the dif-
ference being that the first construct will repeat the command at least once whereas
the second will not execute the command if the condition is initially false. The next
two merely provide a simple way to execute some code a given number of times.
Although we have chosen the for keyword to represent this structure, it is quite
different from the for construct in C. Whereas C’s construct is very similar to the

46

6. Design Choices 6.8 Functions and Procedures

while construct we have decided to make it somewhat simpler by just making the
code execute a number of times while increasing or decreasing a variable, instead of
making the stop condition dependent of the evaluation of a boolean expression. The
constructs look like this:

• for. . . to. . . do. . . .

• for. . . downto. . . do. . . .

The last two constructs work rather different from what is commonly used in
languages like C and Java, but are similar to constructs in Python and Perl:

• foreach. . . in. . . do. . . .

• foreach. . . in. . . where. . . do. . . .

This type of construct is made for iterations over sets of a certain type, where
the regular for-loop would be inconvenient to use, thus seeking to fulfill our goal of
high readability. The first variant of this loop iterates over all elements of the set and
makes them available to the programmer. The second only makes those elements
available where a condition is true. When working with vertices and edges from
graphs, these will be made available through sets and therefore the foreach-loop
will be very useful. Furthermore, this loop-construct will be the only way to iterate
through a set or array of elements.

It could be argued that the choice of six different loop-constructs violates our
relatively high rating of generality because the programmer is limited in the choice
of loop for a certain purpose. Ultimately, however, the goal is to ease a conversion
from pseudo-code algorithms on paper to a running program in the way that the code
should reflect and support pseudo-code expressions. We could end up straying from
this objective if we were to choose fewer and more flexible ways to solve different tasks
(as an example, confer Section 1.1 on page 13 for the way a program in C iterates
over every vertex in a graph) and thereby violating the goal of readability. In other
words, we have argued that orthogonality should be of relatively high importance
in our language as long as it does not affect readability by reducing the simplicity,
which could be the result of fewer and more flexible loops.

6.8 Functions and Procedures

Functions and procedures are needed when a subroutine needs to be invoked from a
main program. They provide code abstraction and thereby increase the readability
of the program.

In DOGS we differentiate from functions and procedures. A function is a sub-
routine that returns a value, whereas a procedure causes side-effects and has no
return value. They are further separated by keywords, a function is declared using
the function keyword followed by the type of the return value and a given number
of arguments, and a procedure is declared using the procedure keyword followed
by a given number of arguments. In Listing 6.5 we have exemplified how to write a
(meaningless!) function in DOGS.

47

6.8 Functions and Procedures 6. Design Choices

1 program DoNothing ;
2
3 function integer returnParam (integer argNumber)
4 l et
5
6 in
7 begin
8 return argNumber ;
9 end

Listing 6.5: An meaningless function written in DOGS

As mentioned earlier, our language should support recursion, i.e. the possibility
for a function or procedure to invoke itself. Some graph algorithms use this exen-
sively, for instance the Merge Sort algorithm (described in [CLRS01], page 28-36)
which sorts a sequence of elements (e.g. an array of integers) by the divide-and-
conquer approach. It divides the problem of sorting the sequence into subproblems
which it then solves recursively and combines the solutions. The Merge Sort algo-
rithm is presented in DOGS code in Listing 6.6.

1 program MergeSort ;
2
3 procedure mergeSort (array ref A , integer p , integer r)
4 l et
5 integer q ;
6 in
7 begin
8 i f p < r then
9 q := (p + r) div 2 ;

10
11 mergeSort (A , p , q) ;
12 mergeSort (A , q + 1 , r) ;
13 merge (A , p , q , r) ;
14 end

Listing 6.6: The Merge Sort algorithm written in DOGS

The merge algorithm does all the calculation and number permutation but is
not relevant in this context. What is relevant is that mergeSort invokes itself twice,
once on each of the left and right split of the sequence.

Recursion increases readability to some extent; it is somewhat intuitive to grasp
that due to some condition an algorithm keeps calling itself to perform the exact same
operations on changed data, but when trying to really understand recursion it is far
more complex. However, excluding recursion from our language would severely limit
the programmer in writing algorithms in our language from pseudo-code examples,
due to the fact that many graph algorithms (and algorithms in general) use it.

48

6. Design Choices 6.9 Scope Rules

6.9 Scope Rules

Having considered the various options on scope rules (as descriped in [Seb04, ch. 5])
the decision has been made that the DOGS language is to be statically scoped, i.e.
variables, functions, and procedures are statically bound. This choice is made since
readability of statically scoped code is better than that of dynamically scoped. This
is supported by [Seb04]:

Programs in static-scoped languages are easier to read, more reliable, and
execute faster than equivalent programs in dynamic-scoped languages.
[Seb04, p. 219]

However, [Seb04] also states that nested subprograms can cause problems in a
statically scoped language. This is not an issue in DOGS, however, since nested
declarations of procedures and functions are not allowed. The scope rules in DOGS
dictate that in the global scope only functions, procedures, global constants, and
record types can be declared. Variable declarations (of both simple types and record
types) take place in local scopes (defined by the let-in construct) inside the decla-
ration of a procedure or function. The variables and constants declared inside these
blocks are available only within that local scope, whereas the identifiers declared
in the global scope are available everywhere in the program. In effect, this means
that constants, record types, procedures, and functions are global within a specific
program, even if shared across several files (packages). Parameters to functions and
procedures are the only way to transfer data between different local scopes, with the
ref-keyword allowing for call-by-reference as previously described. In the interest of
readable and comprehensible code we have chosen that labels, weights and graphs
is always called by reference. This is done for two reasons: One is that references
would be the most common way to employ graphs, labels and weights in parameters
(resulting in a lot of ref-keywords, thus decreasing readability). The other reason is
more sinister: if a label connected to a graph was passed as a parameter together
with the graph, to a function (or procedure). What would happen is that they would
both be copied to new locations in memory. This would result in the very bizare
situation that the label passed to a function would in fact still be connected to the
graph outside the function, and not to the graph that was passed along with it.

6.10 Error handling

As described in Section 3.7, page 28, there are different ways of handling errors
in a programming language. Bearing in mind that the main goal of our language
is to make graph-related problems easy to solve, it could be argued that the need
for specific error handling is less important. Unlike companies that develop heavy
applications it is not crucial for a person of our target audience to rely on a program
that is “fail-safe”, hence justifying our choice of excluding error handling as a part
of DOGS. This means that it will not be possible to throw an error from inside the
program by the programmer and it will not be possible to catch exceptions, they
will simply halt the running program.

49

6.11 Concurrency 6. Design Choices

Some errors will be caught during compilation, e.g. type errors (the type system
in DOGS will be discussed in Chapter 8, and some will be possible to catch during
runtime only, e.g. division by zero. Of course, as to errors that can be caught
during compilation it is our responsibility as compiler-designers to design a somewhat
helpful compiler that will aid the programmer in correcting these errors, for instance
by pointing out the lines in which the errors reside.

6.11 Concurrency

Our discussion in Section 3.6, page 27, of the need for concurrency in DOGS con-
cluded it to be a fundamental part in a programming language. We have, however,
decided not to include it in DOGS.

True, as to different graph problems such as the Travelling Salesman Problem it
does make sense to let the language support concurrency. This is indeed a powerful
way to solve resource demanding tasks. However, in our case of language it is
important to keep in mind our target audience and their programming needs, for
instance the students following the Algorithms and Data Structures course. Their
need is limited to a programming language in which common pseudo-code graph
algorithms can be expressed and tested and as such we do not intend to develop a
heavy-application-oriented programming language, hence making concurrency minor
important.

Another argument for including concurrency is the feasibility of waiting for input
from the user while concurrent threads perform tasks in the background. In general
this is powerful, but as regards graph-specific tasks it could be argumented that it
would make less sense. A typical situation where input from the user is relevant
could be that the program needs to unite a graph from an unknown media or source
(e.g. from a floppy or alternative disk location) with one it is currently working on.
In this situation the program is dependant on the input and cannot continue before
action has been taken from the user.

Consider the Merge Sort Algorithm from Listing 6.6 in Section 6.8. This al-
gorithm (and others that use the divide-and-conquer approach) could possibly be
implemented using multiple threads to work on different subproblems. In this case
we simply judge it to be more readable to use recursion to solve the task.

If simple threading were to be introduced in DOGS one way to do so would be
to allow threads to be declared in the same way as procedures (using a different
keyword) with parameters, some of which could be reference parameters to share
data between the parallel threads. These threads would be started in a manner
resembling usual procedure calls, except that the program would proceed to the
next command and the call would return an integer used to identify the thread to
procedures such as sleep(), kill(), and awake().

It is inherently more difficult to understand and code programs that use threads
and if we decide to focus on making our language support concurrency we can end
up contradicting ourselves in the choice of high readability.

50

6. Design Choices 6.12 Input and Output

6.12 Input and Output

In the analysis we assessed it necessary to include input/output functionality in our
language (Section 3.5, page 27) and consequently DOGS will support it. Listing 6.7
exemplifies how to read from a file and write it to another file.

1 program inputOutput ;
2
3 procedure main (array of string args)
4 begin
5 appendToFile (‘ ‘ output . text ’ ’ , readFile (‘ ‘ dogsFile . dogs ’ ’))

;
6 end

Listing 6.7: Input/output in DOGS

appendToFile takes two string arguments; the first being the file to which it
should append the second string. In the example the second argument is the return
value of the readFile standard function (found in the Standard Environment, cf.
Section 7.4) which takes the string name of an existing file and returns the content
of the file in form of a string.

As stated in Section 3.5 input/output becomes relevant for DOGS in relation
to persisting results from graphs. For instance, one could run Dijkstra’s Algorithm
with different arguments from the command line and append the results to a file.
That way the data is at one’s disposal for analysis. Another example is parsing a file
name from the command line and let the algorithm in question read a graph from
this file.

6.13 Graphs in DOGS

In the language we obviously need some way to represent graphs. In the analysis we
have examined different ways to store graphs, here we investigate which parts should
be supported in the syntax and which should be made as functions or procedures
not written in DOGS. First, however, it is necessary to review the types of graphs
directly supported by DOGS.

The decision has been made to support only two types: Directed graphs (using
the keyword digraph) and undirected graphs (with the graph keyword) and not any
variant of multigraphs. This decision was motivated primarily by the jugdement
that the added complexity (in both design, semantics, and implementation) would
not correspond to the functionality that multigraphs represent. Another worthwile
consideration would be that most multigraphs can be emulated with ordinary graphs.
In the case of multigraphs without weights, one could employ a weight function to
indicate the number of edges, and in most cases even multigraphs with weights can
be converted to ordinary graphs that the language supports.

6.13.1 Vertices and Edges

Listing 6.1 in Section 6.2 illustrates an example of how to construct a graph in our
language. The example clearly demonstrates that we have decided to mix between

51

6.13 Graphs in DOGS 6. Design Choices

pre-defined, standard functions from a standard package and DOGS syntax to rep-
resent graphs in the language. The main reason for this choice is that this mixture
resembles pseudo-code, thus complies with the readability criterion.

Vertices are represented as strings in a specific graph. This is seen in addVertices(G,
V) where V is a set of strings. “Outside” the graph, a vertex variable contains nothing
but a reference to this string: v1 := getVertex(G, ‘‘a’’).

An edge connects two vertices by using references to them. This is where the
necessity of the getVertex(graph G, string identifier) function is clear. With-
out a way to access the vertics via references we cannot work with edges. The edge
primitive contains information on the location of the two vertices it connects to and
once the vertex variables have been assigned references to their respective string rep-
resentations in the graph, an edge can be assigned to a pair of these references using
DOGS syntax. However, similar to vertices, edges are connected to a graph using
a pre-defined function that is responsible for the underlying edge representation in
the graph.

6.13.2 Labels and Weights

Conferring the example of Dijkstra’s Algorithm in Section 2.2, page 19, labels and
weights are set up using the syntax weight/label in G of type w where type can
be integer or string, for instance, and w is the name of the label/weight function.
An important argument about this way of labelling or weighing a graph is that the
specific label/weight function is associated to a certain graph. This means that if a
vertex is removed from a graph it will consequently no longer be possible to access
the associated label (similar with edges).

It could be argued that since a graph and its associated label and weight func-
tions are so strongly connected, why not just let these informations reside in the
graph variable? We have decided not to do so because we want to reflect which
weights and labels are being passed as parameters in the algorithms. This increases
readability. Otherwise, the reader would not be able to see whether a graph passed
to an algorithm is weighted/labelled or not, how many weights/labels of what type
exists in the graph, and so forth.

52

Summary

The design decisions in this chapter concludes the survey of the four languages C,
Perl, Python, and Pascal from the analysis. Our choices are based on the design
criteria from Table 5.1 in Section 5.1, page 34, and it should be noted that the
reason the readability criterion dominates the decisions is the goal of making an
implementation of pseudo-code algorithms a relatively intuitive process without to
much ado, thus applying the pseudo-code style from [CLRS01] to DOGS’ syntax.

Our code examples in DOGS have illustrated a part of the DOGS syntax. In
the following chapter we present the appearance of our language, i.e. its syntax,
the classification of this, and its type system. Suffice it to say that our choices are
influenced by each of the aforementioned languages, however our syntax is strongly
affected by Pascal’s. This comes as no surprise since Pascal is a language originally
made for educational purposes [Seb04, page 80] with a rather intuitive syntax.

53

Chapter 7

The DOGS Language

Having classified important decisions we will now turn to the basic elements of the
DOGS language, i.e. the syntax. The purpose is to describe how programs may be
written, and to some extent how they are intended to be written. Initially, we will
describe some preliminary considerations that were resolved during the development
of the DOGS grammar, followed by the exact syntax presented as a grammar written
in Backus-Naur Form. In part from the development of the grammar of DOGS , a
standard environment has been derived, which contains functions, procedures, and
types that are a part of the language but cannot be written in DOGS. Within these
limits of the language, Dijkstras algorithm will be presented DOGS code in order to
illustrate basic parts of the DOGS grammar.

7.1 Syntax Considerations

The DOGS grammar is developed based on the design choices (cf. Section 6), keeping
the actual implementation in mind. Due to the latter, some specific steps had to
be taken in order to make the grammar “implementation friendly” which basically
means that steps were taken so that an implementation of DOGS would not require
any specific modifications to be applied to the compiler. The steps included resolving
an ambiguity that, to some extent, could have been ignored, and embedding rules of
precedence for different expressions into the grammar. These steps are described in
the following sections.

7.1.1 The “Dangling Else” Problem

A common problem in programming languages is the so-called ”Danglig Else” prob-
lem [App99]. Consider the following sample grammar (note that the ’. . . ’ represent
other commands in the grammar):

<Command> ::= If-Command
| . . .

<If-Command> ::= if Expression then Command
| if Expression then Command else Command

This is a rather standard way of expressing syntax for if-else commands [Sof].

54

7. The DOGS Language 7.1 Syntax Considerations

However, this is an ambiguous grammar and the ambiguity is best illustrated with
an example:

Example 1. if Expression1 then if Expression2 then Command1 else Command2

The example can be interpreted in two ways; either with if Expression2 then
Command1 else Commmand2 as the Command in an If-Then Command, or with if
Expression2 then Command1 as the first Command in an If-Then-Else Command.

In order to overcome this ambiguity parsers have traditionally been modified to
accept the first of the two interpretations [Sof], i.e. an interpretation that matches an
’else’ clause with the nearest previous unmatched ’if’. This is also the interpretation
that DOGS will apply. However, an implementation of DOGS should not rely on
a modification of the parser, and as such this ambiguity should be resolved and
removed from the grammar.

The basic idea in resolving the dangling-else ambiguity is to split the If-Commands
into two categories; open If-Commands, that contain at least one If-Command with
no ’else’ clause, and closed If-Commands, that does not contain an If-Command
unless it is followed by an ’else’ clause [Seb04]. According to this we can revise the
sample grammar:

<Command> ::= Open-Command
| Closed-Command

<Open-Command> ::= if Expression then Command
| if Expression then Closed-Command else

Open-Command

<Closed-Command> ::= if Expression then Closed-Command else
Closed-Command

| . . .
A similar approach was adopted in the transformation of the DOGS grammar,

the result of which is visible in Section 7.2.4

7.1.2 Precedence Rules

In Section 6.3 we presented the operators of DOGS . These operators are part of the
DOGS language and therefore a part of the syntax. One possible approach to embed
them into the syntax would be to let them appear in a single production. However,
this would not enable a compiler to separate the different rules from each other, as no
precedence information would be available. Not unlike the problem of the “dangling
else”, this could be overcome by embedding these rules in the compiler itself [Inc].
However, as stated in the previous section, a DOGS implementation should not
rely on certain specific modifications of a compiler and it is therefore desirable to
embed both the operators and the precedence rules into the syntax. A way to embed
precedence rules of operators along with associativity rules in a grammar is given in
[Seb04]:

• Precedence Rules:
If operator opA, has higher precedence than opB this can be implemented by

55

7.2 DOGS Syntax in BNF 7. The DOGS Language

the sample grammar:
<Expression> ::= opB-Expression

<opB-Expression> ::= opA-Expression
| opA-Expression opB opB-Expression

<opA-Expression> ::= Some-Expression
| Some-Expression opA opA-Expression

It is clear that any Expression in the above grammar must evaluate any expres-
sion with operator opA before an expression with operator opB, as the former
is part of the latter. This principle may be applied to any number of operators,
creating new productions for each level of precedence.

• Associativity Rules:
These rules are applied in extension to the precedence rules. Consider the
grammar used to illustrate the precedence rules, but this time opA has left
to right associativity, and opB has right to left associativity. This can be
implemented by the sample grammar:
<Expression> ::= opB-Expression

<opB-Expression> ::= opA-Expression
| opA-Expression opB opB-Expression

<opA-Expression> ::= Some-Expression
| opA-Expression opA Some-Expression

. . .
Basically, this illustrates that right to left associativity can be implemented
using right recursion and vise versa [Seb04].

This same approach was applied to the operator expressions in the DOGS grammar,
the result of which is described in Section 7.2.3.

7.2 DOGS Syntax in BNF

In our language evaluation criteria we have rated readability as very important. As
mentioned, this choice, among others, has an impact on how we choose to design the
syntax of our programming language. In this chapter we will present our syntax and
informally describe how it is to be understood in order to ease the understanding of
the formal semantics in Chapter 9.

The syntax of DOGS is somewhat inspired by the syntax of the Triangle language,
which is found in Appendix B in [WB00]. We will present the grammar in BNF in
the following sections and present the informal semantics and contextual constraints
related to the different parts of the language. It should be noted that we use regular
expressions such as the ∗-operator to express concatenation when presenting our
lexicon (i.e. it is presented in EBNF).

The presentation of the different parts of the language is done in a bottom-
up approach in the sense that the actual program part, consisting of a number of

56

7. The DOGS Language 7.2 DOGS Syntax in BNF

subparts, is the top-most part of the language and as such will be presented last.
However, the lexicon, consisting mainly of the alphabet of our language as well as
a few very basic production rules, is considered to be inherently different from the
other parts of the language and therefore it is presented at the end of this chapter.

7.2.1 V-Names

In any programming language it is necessary to be able to uniquely identify constant
values and variables. In DOGS, this is done through the V-name production.

1 <V-Name> ::= Identifier
2 | Identifier.V-Name
3 | Identifier[Expression]

1. The simple V-Name Identifier, I, identifies the value or variable bound to I.
The type of the V-name is the type of that value or variable.

2. The V-Name I.V-Name, I.V , identifies the field of a record value or variable
identified by I. I must be of type record and contain a field V .

3. The indexed V-Name I[Expression], I[E], identifies the component of array I
located at the index yielded by the evaluation of E. If no such index exists
in the array, the index is said to be out of bounce and the program will fail.
The evaluation of E must yield an integer value, I must be an array of a given
type, and the component at the given index must be of that same type.

7.2.2 Expressions

Expressions are usually statements from which we can retrieve a value. In DOGS,
this includes a number of different statements ranging from an edge-construct to the
name of a variable.

An expression is evaluated to start the identification of the different elements of
the expression. This is done by evaluating through the different operator productions
until a primary-expression is identified. A primary-expression is evaluated to yield
either a value or a new expression. A comma-expression is evaluated to construct
either an array value or record value.

1. The Expression Assign-Expr, Ae, is evaluated as an Ae ensuring that any sub-
expressions in E will be evaluated in the right order and eventually yielding a
Primary-Expression. This is further explained in Section 7.2.3.

2. The Primary-Expression Integer-Literal, Il is evaluated to the integer value of
Il. This is a number expression.

3. The Primary-Expression String-Literal, Sl, is evaluated to the string value of
Sl. This is a string expression.

57

7.2 DOGS Syntax in BNF 7. The DOGS Language

1 <Expression> ::= Assign-Expr
2 <Primary-Expression> ::= Integer-Literal
3 | String-Literal
4 | Boolean-Literal
5 | Float-Literal
6 | Infty
7 | V-Name
8 | Parameter-Call
9 | (Identifier, Identifier)

10 | (Expression)
11 | {Expression Comma-Expression}
12 <Comma-Expression> ::= ε
13 | ,Expression Comma-Expression

4. The Primary-Expression Boolean-Literal, Bl, is evaluated to the boolean value
of Bl. This is a boolean expression.

5. The Primary-Expression Float-Literal, Fl, is evaluated to the float value of Fl.
This is a number expression.

6. The Primary-Expression Infty, If, is evaluated as an infinite value and may be
compared, or assigned, to variables of either integer type or float type. Other
operations, such as multiplication, are not applicable for If. This is a number
expression.

7. The Primary-Expression V-name, V n, is evaluated to the value identified by
V n, or the value of the variable identified by V n (when V n is a reference to
another variable).

8. The Primary-Expression (Identifier, identifier), (I1, I2), yields the edge that
connects the vertices identified by I1 and I2. The expression is of type edge
and I1 and I2 must both be of type vertex.

9. The Primary-Expression (Expression), (E), is part of the “precedence cycle”
and is a parenthesized expression. E is then sent through the “precedence-
cycle” once more.

10. The Primary-Expression {Expression Comma-Expression }, EcE, may be used
to assign values to an array or a record - note that when evaluating cE it may
yield zero or more expressions. In case of an array, each following expression
will be assigned to a component at the next index of the array, assigning the
value of the first expression to index 1. All expressions must evaluate to a
value of same type as the array. If there are more expressions than indeces in
the array, or if there is a type mismatch, the program will fail.

In case of a record, each expression must be a specific assignment of an expres-
sion to a field contained in the record.

11. The Comma-Expression ε, is the empty string and is, as such, not evaluated.

12. The Comma-Expression , Expression Comma-Expression, , EcE, evaluates as
a comma separated list of arbitrarily many expressions (minimum 1).

58

7. The DOGS Language 7.2 DOGS Syntax in BNF

7.2.3 Precedence Rules

When working with an expression that may be divided into several subexpressions,
it is important to know how to make such a division. This is something that is
determined by rules of precedence (see Section 6.3) which are build into the syntax
of DOGS by creating different productions for each level of precedence. Each of
these productions is evaluated to yield expressions containing operators of higher
precedence, until a primary-expression is reached (cf. Section 7.1.2).

1 <Assign-Expr> ::= Or-Expr
2 | Or-Expr := Assign-Expr
3 <Or-Expr> ::= And-Expr
4 | Or-Expr or And-Expr
5 | Or-Expr xor And-Expr
6 <And-Expr> ::= Not-Expr
7 | And-Expr and Not-Expr
8 <Not-Expr> ::= Compare-Expr
9 | not Not-Expr

10 <Compare-Expr> ::= Less-Greater-Expr
11 | Compare-Expr = Less-Greater-Expr
12 | Compare-Expr <> Less-Greater-Expr
13 <Less-Greater-Expr> ::= Plus-Minus-Expr
14 | Less-Greater-Expr < Plus-Minus-Expr
15 | Less-Greater-Expr > Plus-Minus-Expr
16 | Less-Greater-Expr <= Plus-Minus-Expr
17 | Less-Greater-Expr >= Plus-Minus-Expr
18 <Plus-Minus-Expr> ::= Multiplication-Expr
19 | Plus-Minus-Expr + Multiplication-Expr
20 | Plus-Minus-Expr - Multiplication-Expr
21 | + Multiplication-Expr
22 | - Multiplication-Expr
23 <Multiplication-Expr> ::= Concatenation-Expr
24 | Multiplication-Expr * Concatenation-Expr
25 | Multiplication-Expr / Concatenation-Expr
26 | Multiplication-Expr div Concatenation-Expr
27 | Multiplication-Expr % Concatenation-Expr
28 <Concatenation-Expr> ::= Primary-Expression
29 | Primary-Expression & Concatenation-Expr;

Generally, each production involved with precedence rules may evaluate to the
following production, or itself, an operator, and the following production. Only the
last production, Concatenation-Expr, may evaluate directly to a primary expression.

1 The Assign-Expr may evaluate to an Or-Expr, or to Or-Expr ::= Assign-Expr,
oE ::= aE,

3 The Or-Expr yields true if either either side of the expression yields true, other-
wise it yields false (i.e. both sides of the operator must be boolean expressions).
This is a boolean expression.

6 The And-Expr is evaluated as true if both sides of the And-operator yields

59

7.2 DOGS Syntax in BNF 7. The DOGS Language

a truth value (i.e. both sides of the operator must be boolean expressions).
Otherwise, the expression yields false. This is a boolean expression.

8 The Not-Expr negates a boolean value (i.e. a boolean expression that yields
false using the Not-operator will yield true). The expression following the Not-
operator must be a boolean expression, i.e. an expression that may evaluate
to a truth value. This is a boolean expression.

10 A Compare-Expr determines if two expressions evaluate to the same value
(true) or not (false). Expressions on both sides of the operator must be of the
same type, otherwise the program will fail. This is a boolean expression.

13 A Less-Greater-Expr compares the values of two expressions and yields a
boolean value depending on the operators and the expressions on either side.
Expressions on both sides of the operator must be of either a number type (i.e.
integer or float) or a string type.

18 A Plus-Minus-Expr evaluates to a number value and as such both sides of the
expression must be number expressions and of the same type, otherwise the
program will fail. The expressions are then evaluated according to the rules of
arithmetic. This is a number expression.

23 A Multiplication-Expr evaluates to a number value and as such both sides of
the expression must be number expressions and of the same type. Expressions
are evaluated according to the rules of arithmetic. This is a number expression.

28 The Concatenation-Expr yields a string, and as such both sides of the expres-
sion must yield strings. The string yielded by this expression consists of the
string on the left side of the expression immediately followed by the string on
the right side. This is a string expression.

7.2.4 Commands

Commands are statements that update values of variables and otherwise control the
order of execution in a program. Therefore, commands consist of all control struc-
tures as well as Basic-Commands, allowing new values to be assigned to variables.
The syntax for writing commands in DOGS is divided into two main categories;
open and closed commands. This is done entirely to ensure that the DOGS gram-
mar is unambiguous (cf. Section 7.1.1) and therefore both types of commands are
quite similar, which is why we will only describe the semantics for the general ”if”
statements, the different loop constructs, and our Basic-Commands from the closed
and open commands. Furthermore, the term: ”Single-Command” will be used in
cases where two productions differentiate only in whether they are closed or open
commands.

60

7. The DOGS Language 7.2 DOGS Syntax in BNF

1 <Command> ::= let Declaration in begin Multi-Command end
2 | begin Multi-Command end
3 <Multi-Command> ::= ε
4 | Single-Command Multi-Command
5 <Single-Command> ::= Open-Command
6 | Closed-Command
7 <Open-Command> ::= if Expression then Single-Command
8 | if Expression then Closed-Command else Open-

Command
9 | Loop-Headers Open-Command

10 | do Open-Command while Expression
11 <Closed-Command> ::= Basic-Commands
12 | if Expression then Closed-Command else Closed-

Command
13 | Loop-Headers Closed-Command
14 | do Closed-Command while Expression
15 <Loop-Headers> ::= while Expression do
16 | for V-Name := Expression (to | downto) Expres-

sion do
17 | foreach Single-Declaration in V-Name do
18 | foreach Single-Declaration in V-Name where Ex-

pression do
19 <Basic-Commands> ::= V-Name := Expression;
20 | Parameter-Call ;
21 | Parameter-Call := Expression ;
22 | begin Multi-Command end
23 | switch V-Name Case-Item Default-Item endswitch
24 | break;
25 | return Expression;
26 | V-Name ++;
27 | V-Name --;
28 <Case-Item> ::= ε
29 | case Integer-Literal : Single-Command Case-Item
30 | case Integer-Literal .. Integer-Literal : Single-

Command Case-Item
31 <Default-Item> ::= ε
32 ::= default: Single-Command
33 <Parameter-Call> ::= Identifier (Actual-Parameter-Sequence)

The basic construction of the commands has been devised to avoid ambiguities
in the language (to avoid the “dangling else” problem).

1 The Command production ensures that each function or procedure will be
declared using either a let-in begin-end construction (if variables are used) or
just a begin-end block (if no variables are used). In case of the first construction
the declaration part of the let-in block is elaborated before the command part
of the begin-end block is executed. In the other case the command part is
simply executed.

3 The Multi-Command may evaluate to arbitrarily many Closed-Commands and
Open-Commands (through the Single-Command production). The execution
order of the commands is from left to right.

61

7.2 DOGS Syntax in BNF 7. The DOGS Language

7 The Open-Command if Expression then Single-Command, if E then sC, exe-
cutes sC iff1 E evaluates to true. E must be a boolean expression.

8, 12 The Command if E then Closed-Command else Single-Command, if E then cC
else sC, executes cC iff E evaluates to true, otherwise it executes sC. E must
be a boolean expression.

10, 14 The Command do sC while E is a loop construct that forces sC to be executed
at least once. When execution of sC has finished, it is executed again iff (and
as long as) E evaluates to true. E must be a boolean expression.

15 The Command while E do sC executes sC iff E evaluates to true. When the
execution of sC has finished, E is evaluated again, and only if it evaluates to
true is sC executed again. This continues until E evaluates to false. E must
be a boolean expression.

16 The Command for vN := E1 (to|downto) E2 do sC updates the variable iden-
tified by vN with the value of E1, then the value of vN is compared to the
value of E2. Iff this comparison yields true, sC is executed. When the exe-
cution finishes, the value of the variable identified by vN is decremented, or
incremented, by 1, according to whether the Command is written with downto
or with to. Subsequently, this value is compared to the value of E2. Iff the
comparison yields true sC is executed. This cycle is iterated until the value of
the vN is, in case of downto, less than the value of E2 or, in case of to, greater
than the value of E2. Both E1 and E2 must be number expressions and the
variable identified by vN must accordingly be of the same type.

17, 18 The Command foreach Single-Declaration in vN where E do, foreach sD in vN
where E do, iterates through each item of same type as given by sD contained
in the set identified by vN. In case the where E clause is applied, an item
contained in a set is part of the iteration iff E evaluates to true. sD must not
be assigned anything as part of the declaration, vN must identify a collection,
being a set, an array, a graph, a weight function, a label function, or a record.
Finally, E must be a boolean expression.

19 The Basic-Command vN := E; updates the variable identified by vN with the
value of E. Both vN and the value yielded by E must be of the same type.

21 In this context the value yielded by pC is updated with the value yielded by E.
However, pC must be either a weight or a label function and E must evaluate
to the same type as the declared label or weight function.

22 The Basic-Command begin Multi-Command end is executed simply by execut-
ing the Multi-Command.

23 The Basic-Command switch vN Case-Item Default-Item, switch vN cI dI is a
construct that tries to match the value or the value of the variable identified
by vN with a cI. Iff this is not successful, dI is entered. The value of the
variable identified by vN must be of type integer.

1if and only if

62

7. The DOGS Language 7.2 DOGS Syntax in BNF

24 The Basic-Command break; may be used only inside loop structures in which
it has the effect of breaking out of the loop in question.

25 The Basic-Command return E; must be present within the body of a declara-
tion of a function. It indicates that the function is executed and is ready to
return with the value yielded by E to the callee. The type of the value yielded
by E and the return type of the function must be the same.

26, 27 The Basic-Command vN ++ or vN -- increments or decrements the value iden-
tified by vN by 1 respectively. The value identified by vN must be of a number
type.

28 The Case-Item may consist of arbitrarily many case constructs. A value is
matched with a case and the following sC is executed iff the value is the same
as that of the case (which is given by the Integer-Literal in line 29), or if the
value is contained within the range of the case (which is given by the Integer-
Literal .. Integer-Literal in line 30).

31 The Default-Item may, or may not, contain an actual default case construction
default: sC. A default case, if reached, is executed by simply executing sC.

33 The Parameter-Call, I(Actual-Parameter-Sequence), I(APS), is evaluated as
follows: The APS is evaluated to yield an argument list; then the function
bound to I is called with that argument list. (I must be bound to a function.
APS must be compatible with that function’s formal-parameter-sequence.)

7.2.5 Parameters

Functions and procedures can both have parameters and a way to parameterize
the two is to use the formal-parameter-sequence. The formal-parameter-sequence
allows procedures and functions to have arbitrarily many parameters. The actual-
parameter-sequence is used when calling a parameterized function or procedure and
allows the use of expressions as input.

1 <Formal-Parameter-Sequence> ::= ε
2 | Type-Denoter (ref | ε) Identifier

Comma-Formal-Parameter
3 <Comma-Formal-Parameter> ::= ε
4 | ,Type-Denoter (ref | ε) Identifier
5 <Actual-Parameter-Sequence> ::= ε
6 | Expression Comma-Expression

1 The Formal-Parameter-Sequence may consist of arbitrarily many, comma-separated,
formal parameters and is used when declaring a procedure or function. A for-
mal parameter consists of a Type-Denoter followed by an optional keyword,
ref, that determines whether or not the parameter should be passed to the
function or procedure by reference. The Identifier I of the formal parameter is
bound as a vN to a variable with the value that is passed as argument to the
funtion or procedure, and can be used directly within the body of these.

63

7.2 DOGS Syntax in BNF 7. The DOGS Language

5 The Actual-Parameter-Sequence is a comma separated list of expressions and is
used when calling a procedure or function. Each expression is evaluated and the
yielded values are then passed along as arguments to whatever is called. The
Actual-Parameter-Sequence must match the corresponding Formal-Parameter-
Sequence, i.e. the number of actual parameters must match the number of
formal parameters and each actual parameter must be of the same type as its
corresponding formal parameter.

7.2.6 Type-denoters

The type-denoters are used to denote data types for Formal-Parameter-Sequences
(Section 7.2.5) and for reference declarations (Section 7.2.7). Types are used to
determine what a programming language is dealing with. There are only very few
types in DOGS that require specific syntax, and as such these are denoted while all
others, such as string and boolean, are included in the standard environment (cf.
Section 7.4.

1 <Type-Denoter> ::= Identifier
2 | array of Identifier
3 | weight of Identifier
4 | label of Identifier
5 | set of Identifier

1 The Type-Denoter I denotes the type bound to the identifier I.

2 The Type-Denoter array of I denotes a type whose values are arrays. Each
array value of this type has an index range whose lower bound is 1 and whose
upper bound is an integer. This integer is set when the array is declared. Each
array value has one component of type I for each value in its index range.

3 The Type-Denoter weight of I denotes a weight function with elements of the
type bound by identifier I.

4 The Type-Denoter Label of I denotes a label function with elements of the
type bound by identifier I.

5 The Type-Denoter set of T denotes a set whose values are restricted to the
type bound by identifier I.

7.2.7 Declarations

DOGS has quite a strict typing system (defined in Section 8 that ensures that ev-
erything has to be declared before use. By using declarations, identifiers are bound
to a specific type which enable DOGS to avoid type-clash errors. Furthermore,
declarations may update variables.

64

7. The DOGS Language 7.2 DOGS Syntax in BNF

1 <Declaration> ::= ε
2 | Single-Declaration-Const-Type Declaration
3 | Single-Declaration; Declaration
4 <Single-Declaration> ::= SAV-Help-Declarations (ε | Declaration-Assignment)
5 | weight in V-Name of Identifier Identifier
6 | label in V-Name of Identifier Identifier
7 <Single-Declaration-Const-Type> ::= record Identifier (Const-Declaration — SAV-

Help-Declarations) Declaration-Assignment Type-
Declaration-Helper;

8 | Const-Declaration Declaration-Assignment;
9 <Type-Declaration-Helper> ::= ε

10 | , (Const-Declaration — SAV-Help-Declarations)
Declaration-Assignment Type-Declaration-Helper

11 <Multi-Declaration-Const-Type> ::= ε
12 | Single-Declaration-Const-Type Multi-Declaration-

Const-Type
13 <Single-Secondary-Declaration> ::= ε
14 | procedure Identifier (Formal-Parameter-Sequence)

Command Single-Secondary-Declaration
15 | function Type-Denoter Identifier (Formal-

Parameter-Sequence) Command Single-Secondary-
Declaration

16 <Declaration-Assignment> ::= ε
17 | ::= Assign-Expr
18 <Const-Declaration> ::= constant SAV-Help-Declarations
19 <Variable-Declaration ::= Identifier Identifier
20 <Set-Declaration> ::= set of Identifier Identifier
21 <Array-Declaration> ::= array of Identifier Array-Size-Denoter Identifier
22 <Array-Size-Denoter> ::= ε
23 | [Integer-Literal]
24 | [Integer-Literal] Array-Size-Denoter
25 <Sav-Help-Declarations> ::= Set-Declaration
26 | Array-Declaration
27 | Variable-Declaration

1 A Declaration may consist of arbitrarily many Single-Declaration-Const-Type
or Single-Declaration productions.

4 The Single-Declaration SAV-Help-Declarations, SHD may consist of a Set-
Declaration, an Array-Declaration, or a Variable-Declaration followed by an
optional assignment of an expression, the Declaration-Assignment, dA.

5 The Single-Declaration weight in vN of I1 I2 is a declaration of a weight func-
tion. vN must be of type graph or diGraph. I1 denotes type of the weight and
I2 is the variable name, to which the weight function is bound.

6 The Single-Declaration label in vN of I1 I2 is a declaration of a label function.
vN must be of type graph or diGraph. I1 denotes the type of the label and I2

is the variable name, to which the label function is bound.

7 The Single-Declaration-Const-Type may either be a declaration of a new type,
i.e. a record, or a declaration of a constant. The record declaration is of the

65

7.2 DOGS Syntax in BNF 7. The DOGS Language

form record I followed by arbitrarily many (at least one), comma-separated,
SHD ’s or Const-Declaration’s, cD, each followed by dA. I is the identifier to
which the record structure is bound and the different declarations make up
the structure of the record. In case of cD it should be noted that dA is non-
optional, i.e. dA must not be the empty string, ε.

The constant declaration is specified in item 20 and must be followed by a
non-optional dA.

11 A Multi-Declaration-Const-Type may consist of arbitrarily many Single-Declaration-
Const-Type’s.

14 The Single-Secondary-Declaration procedure I (Formal-Parameter-Sequence) C
Single-Secondary-Declaration, procedure I (FPS) C SSD, is a procedure decla-
ration. I is bound to a procedure whose formal-parameter-sequence is FPS
and whose body is the command C. When I is called with an argument list,
FPS is associated with that list, then C is executed in the environment of the
procedure declaration overlaid by the bindings of the formal-parameters.

15 The Single-Secondary-Declaration function tD I (FPS) C SSD is a function
declaration. I is bound to a function whose formal-parameter-sequence is FPS
and whose body is the command C. When I is called with an argument list,
FPS is associated with that list, then C is executed, in the environment of the
function declaration overlaid by the bindings of the formal-parameters. tD is a
Type-Denoter that specifies the return type of the expression that I evaluates
and returns to the callee.

16 The Declaration-Assignment may become an assignment of the form ::= Assign-
Expr, or the empty string. This is evaluated as any other assignment.

18 The Const-Declaration is either a Set-Declaration, an Array-Declaration, or a
Variable-Declaration with the word constant prepended. This is always fol-
lowed by a non-optional dA. Once I is declared to be a constant of any given
type allowable and initialized, it cannot change value.

19 The Variable-Declaration I1 I2 is a declaration of a variable. I2 denotes a
variable that is going to be of the type identified by I1. After initialization I2

may not be redeclared or used as any other type than what was denoted by I1.

20 The Set-Declaration set of I1 I2 declares a set containing an arbitrary number
of elements of the type denoted by I1. The set is bound to, and thereby
identified by, I2.

21 The Array-Declaration array of I1 Array-Size-Denoter I2, is a declaration of
an array identified by I2. The array is of the type denoted by I1 and may
only contain elements of this type. The array is indexed, with its lower bound
being 1 and its upper bound being defined by the Array-Size-Denoter, ASD.
If the ASD is omitted when declaring the array, it may only be assigned with
another array of same type, and it shall then inherit all properties of said array.
However, there may be arbitrarily many ASD ’s and if there are more than one,

66

7. The DOGS Language 7.2 DOGS Syntax in BNF

the array is said to be multidimensional. Basically, this means that each index,
defined by the first ASD, contains an array of size defined by the second ASD
and so forth - all of same type as denoted by I1. An array is static, and may
not change size after it has been initialized.

7.2.8 Program

1 <Program> ::= program Identifier ; Package-Import Multi-
Declaration-Const-Type Single-Secondary-
Declaration

2 | package Identifier ; Package-Import Multi-
Declaration-Const-Type Single-Secondary-
Declaration

3 <Package-Import> ::= ε
4 | import V-Name; Package-Import

1 The Program is the topmost part of the DOGS language. The program may be
either declared as program, in which case it has to have a main procedure, or
package, in which case it must not have a main procedure, both identified by an
identifier I. This is followed by first an arbitrary number of Package-Import ’s,
pI, then an arbitrary number of Multi-Declaration-Const-Type’s, MDCT, and
finally a number of Single-Secondary-Declarations’s, SSD.

4 The Package-Import import vN;, imports the package identified by vN and
includes references to functions, procedures, and globally declared records and
constants. Following all of these elements are accessible from the current DOGS
program. vN must be the name of package.

7.2.9 Lexicon

The DOGS lexicon is presented below:

67

7.3 Classification of the DOGS Grammar 7. The DOGS Language

<Token> ::= Integer-Literal | String-Literal | Float-Literal |
Boolean-Literal | Identifier | Operator | array | ref
| begin | constant | do | else | end | function |
procedure | if | in | let | of | record | then |
type | while | for | foreach | to | downto | where |
switch | endswitch | return | case | weight | label
| edge | vertex | program | package | set | ++ | --
| break | infty | default | import | . | : | ; | , |
:= | (|) | [|] | { | }

<Integer-Literal> ::= Digit Digit*
<Float-Literal> ::= Digit Digit* . Digit Digit*
<Boolean-Literal> ::= true | false
<String-Literal> ::= ‘‘ Escape-Literal* Letter* Escape-Literal* ’’
<Escape-Literal> ::= \n | \t | \\
<Identifier> ::= Letter (Letter | Digit)*
<Comment> ::= // Graphic* end-of-line

| /* Graphic* */
<Blank> ::= space | tab | end-of-line
<Graphic> ::= Letter | Digit | Operator | space | tab | . | : | ; | ,

| | (|) | [|] | { | } | | | | ! | ’ | ‘ | ‘‘ | # | $
<Letter> ::= a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p |

q | r | s | t | u | v | w | x | y | z | A | B | C | D | E | F |
G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V |
W | X | Y | Z

<Digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<Operator> ::= + | - | * | / | & | = | <= | >= | < | > | % | div | <> | and

| or | not | xor

7.3 Classification of the DOGS Grammar

For parsing purposes grammars are classified according to how they may be recog-
nized, i.e. they are classified according to the main principles of algorithms that
recognize them. Therefore, it is important to know the classification of a gram-
mar before a strategy for parsing is chosen. Generally, algorithms that are used to
recognize languages follow two main strategies that may be applied for parsing; a
top-down strategy or a bottom-up strategy [Seb04].

According to [WB00] the top-down approach takes an input string, examines
the terminal symbols from left to right, and creates a syntax tree from these termi-
nal symbols towards the topmost node, the root node (the start production of the
grammar). A well-known top-down algorithm is the recursive descent algorithm.

The bottom-up approach also takes an input string, examines the terminal sym-
bols from left to right, and creates a syntax tree from the top node towards the
terminal symbols. An example of a bottom-up algorithm is an LR algorithm.

In Figure 7.1 different classifications of grammars and their relations are shown.
The LR algorithm recognizes the LR set of grammars and the recursive descent
algorithm recognizes the LL set of grammars. It is clear that the set of LL grammars
is a subset of the LR grammars.

In the following we will give a brief description of some main charateristics of the
LL and LR sets of grammars, in order to give a classification of the DOGS grammar.

68

7. The DOGS Language 7.3 Classification of the DOGS Grammar

Figure 7.1: Hierarchy of grammars [Tho]

7.3.1 LL Grammars

The term “LL grammar” stems from what the algorithm, that is able to parse it, does:
It reads the terminal symbols from Left to right and it makes a Leftmost derivation
[Seb04]. Furthermore, they may be numbered, as in Figure 7.1, according to the
look-ahead needed to parse them, i.e. LL(1) needs a look-ahead of one terminal,
LL(2) needs a look-ahead of two terminals, and so on.

A more formal definition of an LL grammar, or more specifically, an LL(1) gram-
mar is [WB00]:

• If the grammar contains a production in which the right side is of the form
X|Y the terminal that may start an X production must be different from the
terminal that may start a Y production.

• If the grammar contains a production in which the right side is of the form
X∗, the terminal that may start an X production must be inherently different
from the terminal that may follow the X∗.

This may be expanded to a formal definition of an LL(k) grammar, by substi-
tuting the terminal with the k first terminals in the above definition.

Also, it is worth noting that the following properties of LL-grammars can be
proved [Tho]:

• No grammar with productions that are left-recursive is an LL(1) grammar.

• No grammar that is ambiguous is an LL(1) grammar (cf. Figure 7.1).

• Although many languages can be expressed with an LL(1) grammar, this is
not the case for all languages.

• If a grammar contains no empty strings, then if each production starts with a
unique terminal, the grammar is an LL(1) grammar.

69

7.3 Classification of the DOGS Grammar 7. The DOGS Language

From Figure 7.1 it is clear that the set of LL(1) grammars is rather small and
it turns out that it can be difficult to express common programming constructs
as an LL(1) grammar [Gagb]. However, for unknown reasons, many programming
language developers still design the syntax of their programming languages such
that they are suitable for recursive descent parsing, i.e. they express the grammar
as LL(1) grammars [WB00].

7.3.2 LR Grammars

An LR grammar is classified as an LR grammar because it may be parsed with an
LR algorithm. An LR algorithm is, as previously mentioned, a bottom-up parsing
algorithm that relies on parse-tables to make parse decisions. The algorithm is
called an LR algorithm because it reads terminals from Left to right and makes a
Rightmost derivation [Seb04].

LR algorithms are widely used for parsing purposes because they are very flexible
as they work for most grammars that describe programming languages. However,
LR parsers do take up a lot space and are difficult to write [Seb04].

As a response, several different LR algorithms have been developed, all being able
to parse a subset of the grammars and differentiate only in the way they construct
their parse-tables. Amongst these are [Tho]:

• LR0 is the simplest algorithm and although being important for theoretical
purposes it is rather weak, thus not very useful in the “real” world.

• SLR, or Simple LR, is an improved version of LR0 and although it, too, is
rather weak, it is able to parse more grammars and is therefore more practical.

• LR1 is essentially an LR0 algorithm, but because it is enhanced with an extra
look-ahead token it is a very powerful algorithm. Though, in spite of its power
it is not a very used algorithm since it takes up too much memory when used.

• LALR is a modified version of the LR1 algorithm in which the memory re-
quirements have been greatly reduced, at a relatively small cost of power. This
makes the LALR algorithm the most commonly used parse algorithm today
[Tho].

Being that the LALR parse algorithm is the most commonly used algorithm for
parsing, it seems reasonable to elaborate on what is known about LALR algorithms.

7.3.2.1 LALR Grammars

Parsers that recognize LALR grammars, or Look-Ahead LR grammars, are obviously
called LALR parsers. A grammar is called a LALR grammar if a LALR parse table
can be constucted without any conflicts. A quick check, is to use a LALR parser
generator tool and observe if it is able to generate this table [Tho]. As seen in Figure
7.1, the set of LALR grammars is greater than the sets of LR0 and SLR grammars.
When it is stated that the memory requirements for LALR parsers are less than
those for LR grammars it is because a LALR algorithm constructs relatively smaller
parse tables [WB00].

However, the most important statement, probably, of LALR grammars is that:

70

7. The DOGS Language 7.4 Standard Environment

Basically all programming languages have LALR grammars [Tho].

This is why LALR parsing methods, in particular, are commonly used for auto-
matic tools today [Tho].

7.3.3 The DOGS Grammar

The main issue that we have to resolve for the DOGS grammar is whether a top-down
parsing approach or a bottom-up parsing approach to parse the grammar should be
taken. Based on the previous section, it follows that we may determine if a top-down
approach is suitable by determining if the grammar is an LL grammar.

Consider the following part of the DOGS grammar:

<Single-Command> ::= Open-Command
| Closed-Command

<Open-Command> ::= if Expression then Single-Command
| if Expression then Closed-Command else Open-

Command
. . .

<Closed-Command> ::= Basic-Commands
| if Expression then Closed-Command else Closed-

Command
. . .

It is clear that this grammar does not oblige to the first condition in the formal
definition of an LL(1) grammar as presented in Section 7.3.1. This is because both
the Open-Command and the Closed-Command may start with same terminal if
(furthermore, this grammar does not even oblige to second condition of the defini-
tion). In extension, it can even be shown that the grammar is not an LL grammar
at all, since the Open-Command and Closed-Command, may start with arbitrarily
many of the same terminals (if Expression then Closed-Command else). Hence,
top-down parsing of the DOGS grammar is not possible and the parsing strategy
applied for the DOGS language must be the bottom-up strategy.

However, as previously implied, it is a tedious task to classify a grammar within
the grammars that may be recognized by a bottom-up parsing approach. Though,
based on what is known about LALR grammars, it seems plausible to suspect the
DOGS grammar to be a LALR grammar. This, however, is easily shown by con-
structing a LALR parse table, but since this is a rather difficult task [Tho], it will
not be clarified until a parser has been constructed.

7.4 Standard Environment

The DOGS syntax does not cover all functionality in the language. Some of it cannot
be expressed in DOGS , thus claiming an environment in which this functionality
can reside. This is the standard environment in DOGS. It contains a collection of
predefined types, constants, and procedures or functions. Before analyzing a source
program the contextual analyzer initializes the identification table with entries for
the identifiers in the standard environment. With this initialized identification table
it is possible to do type checking on the standard types.

71

7.5 Dijkstras Algorithm in DOGS 7. The DOGS Language

The types in the standard environment are the primitive types such as integer
and string and the graph related standard types such as vertex and diGraph
(directed graph). The constants are the boolean values true and false.

The most interesting part of the standard environment in DOGS is the selection
of standard functions and procedures. In the analysis we concluded that a language
for working with algorithms would be of no use if input/output is not possible and
therefore DOGS must support it. Since it would not provide any new interesting
information to include input/output keywords in the syntax, we have chosen (as
in most programming languages) to support input/output by the use of functions
and procedures. These have been placed in the standard environment. We have
included a rather small selection of input/output functions and procedures, since
more advanced ones can be created by using the fundamentals included. For example,
one can wish to read a whole text file into a single string variable. Such a function
can be programmed by using the readLine function from the standard environment
until end-of-file has been reached. Libraries can be used as collections of such
more advanced input/output.

In addition to input/output the standard environment in DOGS also contains
a selection of functions and procedures for working with graphs. These provide
functionality for creating a graph, creating a vertex with a unique identifier, adding
vertices or edges to a graph, removing vertices or edges from a graph, and retrieve
information from the graph representation.

As mentioned the functionality of the functions and procedures in the standard
environment cannot be written in DOGS, thus it must be implemented as a part
of the compiler. Functions and procedures that are somehow standard, but can be
written in DOGS will be placed in standard libraries instead.

The complete standard environment with comments can be found in Appendix
A.

7.5 Dijkstras Algorithm in DOGS

Having introduced the DOGS syntax we will briefly clarify it by an example. We
return to Dijksta’s Algorithm, only this time we write it in DOGS code. It will not
go through a thorough review (a scrutiny is found in Section 2.2, page 19) but merely
illustrate a way of implementing it in DOGS.

7.5.1 Presentation of Dijkstra’s Algorithm in DOGS

Listing 7.1 shows Dijkstra’s Algorithm in DOGS. A package, graphToolkit, has
been imported which consists of functions and procedures written in DOGS that are
useful graph “tools”.

In main we declare the variables necessary for Dijkstra to run, i.e. a graph G,
vertices, edges, a set of strings V , and a weight function that relates to G. In the
body of main we call the standard functions addVertices for connecting V to G and
addToSet for adding strings to V . We then assign the vertices declared to a value
in the graph, i.e. they are now part of G. Correspondingly the edges are initialized
and connected to G using addEdge. Finally, the weight function weights the edges

72

7. The DOGS Language 7.5 Dijkstras Algorithm in DOGS

and dijkstra is invoked with G, w, and a start vertex a passed. This constitutes
the preliminary work.

Similarly, the let-in block in dijkstra does all the groundwork, i.e. declaring
two sets of vertices V and S, two label functions to the passed graph G, d and pi, an
instance of a set Queue, and the start vertex u. From this point the actual Dijkstra’s
Algorithm initiates. The DOGS code can be compared to the pseudo-code example
from Section 2.2 to see the resemblance in appearance.

1 program DijkstraInDOGS ;
2
3 import graphToolkit ;
4
5 procedure main (array of string args)
6 l et
7 graph G ;
8 vertex v1 ; vertex v2 ; vertex v3 ;
9 edge e1 ; edge e2 ; edge e3 ;

10 set of string V ;
11 weight in G of integer w ;
12 in
13 begin
14 addVertices (G , V) ; /∗resides in a standard package∗/
15 addToSet (V , ” a”) ;
16 addToSet (V , ” b”) ;
17 addToSet (V , ” c”) ;
18 v1 := getVertex (G , ” a”) ;
19 v2 := getVertex (G , ” b”) ;
20 v3 := getVertex (G , ” c”) ;
21 e1 := (v1 , v2) ;
22 e2 := (v1 , v3) ;
23 e3 := (v2 , v3) ;
24 addEdge (G , e1) ; addEdge (G , e2) ; addEdge (G , e3) ;
25 //An alternative would be addEdge (G , (v2 , v3)) ;
26 w (e1) := 5 ;
27 w (e2) := 3 ;
28 w (e3) := 7 ;
29 dijkstra (G , w , a) ;
30 end
31
32
33 procedure dijkstra (graph G , weight of integer w , vertex s)
34 l et
35 set of vertex V ;
36 label in G of integer d ;
37 label in G of vertex pi ;
38 set of vertex S ;
39 set of vertex Queue ;

73

7.5 Dijkstras Algorithm in DOGS 7. The DOGS Language

40 vertex u ;
41 in
42 begin
43 V := vertices (G) ;
44 foreach vertex v in V do
45 begin
46 d (v) := infty ;
47 addToSet (Queue , v) ;
48 end
49 d (s) := 0 ;
50 while sizeOfSet (Queue) > 0 do
51 begin
52 u := extractMinLabel (Queue , d) ;
53 addToSet (S , u) ;
54 foreach vertex v in V where (isEdge (u , v) and not

inSet (S , v)) do
55 i f (d (v) > d (u) + w ((u , v))) then
56 begin
57 d (v) := d (u) + w ((u , v)) ;
58 pi (v) := u ;
59 end
60 end
61 end

Listing 7.1: Dijkstra’s Algorithm written in DOGS

74

Chapter 8

Type System in DOGS

In this chapter we will present the formal type system in DOGS in order to justify
leaving aside the type checking in the semantics, in the assumption that it has already
been done at this stage. In other words, we will assume that DOGS programs are
well typed. This claim requires explanation. A brief introduction as to what type
systems, are along with a discussion of the need for a formal type system, account
for introducing a selection of type rules in DOGS. The entire DOGS type system
can be found in Appendix D. The chapter is based on [Car04].

8.1 Introducing Type Systems

According to [Car04] the purpose of a type system is to prevent the occurence of
runtime errors when running a program. Succeeding in doing so makes a language
type sound, a property that can be obtained by formalizing the type system of the
language and prove the type soundness theorem stating that well-typed programs are
well behaved [Car04]. Whether the language in question can be proved to be type
sound, formal type systems are more powerful than informal language descriptions
as they characterize the type structure of a language in a concise way, that allows
for an unambiguous implementation.

8.1.1 Well-behaved Programs

Type systems are used to determine well behaviour of programs. A program is said
to be well behaved if it avoids causing a certain type of execution errors to occur,
the forbidden errors. This class of errors is a subset of the possible execution errors,
including trapped errors (i.e. errors that causes the computation to stop immediately)
and a subset of the untrapped errors (i.e. errors that go unnoticed for a while and
later in execution cause arbitrary behaviour [Car04]).

By performing compile time checks maintained by the typechecker, typed lan-
guages (i.e. languages where variables can be given nontrivial types [Car04]) can
enforce good behaviour and prevent ill-behaved programs from ever running. A
program that passes the typechecker is said to be well-typed.

75

8.2 Formalizing Type Systems 8. Type System in DOGS

8.2 Formalizing Type Systems

Having identified the meaning of well-typed programs, we now describe the strategy
of formalizing the type system of a language, as it explains the steps in setting up
the DOGS type system. The steps are:

• Describe the syntax of types and terms (statements, expressions, declarations,
etc) of the language.

• Define the scope rules of the language.

• Define typing environments.

• Identify type relations.

The scope rules of a language need to be static in the sense that binding location
of identifiers has to be determined before runtime [Car04].

Identifying type relations involves describing the relation has-type denoted by
M : A between terms M and types A. Further, if the language has subtypes, a
relation subtype-of has to be defined, denoted by A <: B between types A and B.
This also applies for type equivalence between two types A and B, denoted by A = B

Static typing environments are closely related to the symbol table of a compiler in
the typechecking phase in that they record the types of free variables. The notation
Γ `M : A expresses that the term M has type A in the type environment Γ.

8.3 Typing Judgments

The notation introduced in the previous section, Γ ` M : A, meaning that M has
type A in Γ is called a typing judgment. Generally, judgments are on the form:

Γ ` =

where = is an assertion with free variables declared in Γ. Variables declared in
Γ is indicated by dom(Γ). A judgment we will use is

Γ ` �

which asserts that Γ is well-formed, meaning that it has been properly constructed
[Car04].

8.4 Defining the Type Rules in DOGS

The type rules in DOGS will be outlined in the following sections. According to the
steps in formalizing the DOGS type system, we introduce an abstract syntax from
which we can specify the rules.

DOGS is a statically scoped language (cf. Section 6.9, page 49) and as such the
identifiers are bound before runtime.

76

8. Type System in DOGS 8.4 Defining the Type Rules in DOGS

8.4.1 Abstract Syntax

The DOGS syntax presented in Chapter 7.2, page 56, is in ways too concrete to
use in the formal semantics, since it provides unnecessary information, e.g. operator
precedence. Instead, we need a syntax with a somewhat more simplified overview
of our language and with a classification of production rules that is more “form
oriented”, i.e. a syntax that solely describes the structure of the different language
constructions, regardless of the fact, that it allows for syntactical constructs that
makes no sense in DOGS.

77

8.4 Defining the Type Rules in DOGS 8. Type System in DOGS

8.4.1.1 Syntactical Categories

Table 8.1 lists the syntactical categories and meta variables representing elements
in these categories. As mentioned, elements fall into the same category when they
share characteristics (e.g. elements from IntegerExpression can enter into arithmetic
expressions, whereas elements from Command cannot).

Pro ∈ DOGSProgram
S ∈ Command
i ∈ IntegerExpression
f ∈ FloatExpression
n ∈ NumberExpression
op ∈ Operators
b ∈ BooleanExpression
w ∈ StringExpression
exp ∈ Expression
c ∈ Constant
v ∈ Value
int ∈ Integer
float ∈ Float
bool ∈ Boolean
str ∈ String
x ∈ Var
X ∈ generalizedVar
DV ∈ DecVar
DV B ∈ DecVarBlock
DV R ∈ DecVarRec
DC ∈ DecConst
DR ∈ DecRec
DB ∈ DecFuncProcBlock
ProcN ∈ ProcedureName
FuncN ∈ FunctionName
RecN ∈ RecordName
typeN ∈ TypeName
RtypeN ∈ RecordType

Table 8.1: The syntactical categories in DOGS

8.4.1.2 Production Rules

The abstract syntax is broadly divided in declarations, commands, and expressions.
We will not explain the production rules for the different language constructs here,
since a walkthrough is found in Chapter 7.2, starting on page 56.

78

8. Type System in DOGS 8.4 Defining the Type Rules in DOGS

8.4.1.3 Declarations

Pro ::= program Imp DRDCDB | package Imp DRDCDB

Imp ::= import str; | ImpImp | ε
DV B::= DV B D V B | DV ; | ε
DV R::= DV R, DV R | DV | ε
DV ::= typeN x | typeN x := exp | array of typeN x ArrayDim | set of typeN

x | weight in X of typeN x | label in X of typeN x
DC ::= DC DC | constant typeN c := exp; | ε
DB ::= DBDB | function type FuncN (ParF) LetIn | procedure ProcN (ParF)

LetIn | ε
DR ::= record RtypeN DV R; | DR DR | ε
LetIn ::= let DV B in S | S

8.4.1.4 Commands and Expressions

S ::= S1S2 | X := exp; | X := {RecAggr} ; | X(exp1) := exp2; | X ArrayDim
:= exp;| if b then S | if b then S1 else S2 | while b do S | do S while
b; | for x := i1 to i2 do S | for x := i1 downto i2 do S | foreach
typeN x in X do S | foreach typeN x in X where b do S | switch X
S endswitch | return exp; | break; | X++; | X−−;| ProcN(ParA);
| begin S end | case int: S | case int1..int2: S | default: S | ε

X ::= x | RecN.X
RecAggr ::= RecAggr, S | S | ε
b ::= bool | X | n1 = n2 | n1 < n2 | n1 > n2 | n1 <= n2 | n1 >= n2 | n1 <> n2 |

not b1 | b1 = b2 | b1 and b2 | b1 or b2 | b1 xor b2 | (b) | X ArrayDim |
FuncN(ParA)| X(exp)

op := + | - | * | / | div | mod
i ::= int | X | i1 op i2 | (i) | X ArrayDim | FuncN(ParA) | X(exp) | infty|

−infty
f ::= float | X | f1 op f2 | (f) | X ArrayDim | FuncN(ParA)| X(exp) |

infty| −infty
n ::= i | f
w ::= str | X | exp1 & exp2 | FuncN (ParA)
exp ::= n | n op n | b | w | X | FuncN (ParA) | (X1, X2) | X(exp) | X ArrayDim
ParA ::= exp1 | exp1, ParA | ε
ParF ::= typeN x | ParF typeN x | typeN ref x | ParF typeN ref x | ε
ArrayDim ::= [i]ArrayDim |ε

8.4.2 Types and Judgements in DOGS

In Table D.1 the different types in DOGS are listed and categorized. They are
grouped in sets for reasons of readability and comprehension which will be apparent
when exploring the different type rules. Notice that the record type of DOGS is
nowhere to be found. It has deliberately been left out of the type system due to the
fact that it is rather complex within the DOGS language and will therefore be dealt
with seperately in a more informal manner.

The types in Table D.1 form the foundation for the type system. Notice that types

79

8.4 Defining the Type Rules in DOGS 8. Type System in DOGS

boolean boolean type ∈ basic ∈ primitiveType
string string type ∈ basic ∈ primitiveType
float float type ∈ basic ∈ primitiveType
integer integer type ∈ basic ∈ primitiveType
infty infty type
vertex vertex type ∈ primitiveType
edge edge type ∈ primitiveType
array of primitive array type
set of primitive set type
weight of primitive weight type
label of primitive label type
typeN1 → typeN2 function type
proc typeN procedure type
prog program type
pack package type
typeN constant constant type

Table 8.2: Types in the DOGS type system

for functions, procedures, programs, and packages are amongst the types. Intuitively
these are not considered to be data types in DOGS, however, in order to ensure that
either of them is well-typed, it makes sense to include them among the data types.
Another noticeable thing is the introduction of the sets primimtiveTypes and basic
that contain primitive types of DOGS and types that are commonly regarded as
primitives, respectively.

The DOGS type system has a series of judgements listed in Table D.2. One
judgement that may need some explanation is Γ ` D ∴ A, this judgement asserts
that the declaration D is well-formed and with the signature A. The signature of
such an declaration is, essentially the type of the declaration [Car04], however, in
DOGS the signature may consist of list elements, very similar to environments.

Γ ` � Γ is a well-formed environment
Γ ` typeN typeN is a well-formed type in Γ
Γ ` S S is a well-formed command in Γ
Γ ` exp : typeN exp is a well-formed expression of type typeN in Γ
Γ ` D ∴ A D is a well-formed declaration of signature A in Γ
Γ ` typeN1 <: typeN2 typeN1 is a subtype of typeN2 in Γ

Table 8.3: Judgements for the DOGS type system

Now that the types and judgments in DOGS have been presented, we may begin
to state actual type rules. This includes rules that ensure that types of the language
are well-formed, rules that ensure that declarations are well-formed and so on. As
previously mentioned we will now present a few of these rules.

The first rule that is introduced in DOGS is actually the axiom that states that
the empty set is well-formed. Along with this axiom, a few important rules that

80

8. Type System in DOGS 8.4 Defining the Type Rules in DOGS

ensure that any variable can only be declared once in any environment and that a
variable is only available if it has already been declared are presented. The rules are
stated in Table 8.4.

[env-empty] [env-extension] [env-var-exists]

∅ ` �
Γ ` typeN x /∈ dom(Γ)

Γ, x : typeN ` �
Γ, x : typeN ` �

Γ, x : typeN ` x : typeN

Table 8.4: Environment rules

The DOGS type system differentiates between declarations that declare new
variables, expressions that have a specific type, and commands that do not have
types. The first rule is the [label] rule in Table 8.5 182.

[label]
Γ ` x : labeloftypeN Γ ` exp : vertex

Γ ` x(exp) : typeN

Table 8.5: Expression rule, found in Table D.18, page 182

The rule states that the expression x(exp) is a type correct label iff x has been
declared as a variable, i.e. if it exists in the environment Γ and expression exp is a
type correct vertex.

Commands may consist of other commands and expressions and the next rule
that will be presented is the [LetIn] command rule in Table 8.6. It considers the
function or procedure body, that may also contain declarations. The above rule
states that the command let DV B in S is type correct iff the block of declarations
DV B is well-formed under environment Γ and the command S is well-formed under
Γ combined with the signature of DV B, A, i.e. the different declarations of DV B

The final rule that is presented in this section is the [dec-var-init] rule in 8.7,
which is a declaration that is assigned a value. The above rule states that a dec-
laration of variable x is well-formed iff typeN is a well-formed type in DOGS and

[LetIn]
Γ ` DV B ∴ (A) Γ, A ` S

Γ ` (let DV B in S)

Table 8.6: Command rule, found in Table D.3, page 179

81

8.5 Records 8. Type System in DOGS

[dec-var-init]
Γ ` typeN Γ ` exp : typeN

Γ ` (typeN x:=exp) ∴ (x : typeN)

Table 8.7: Declaration rule, found in Table D.9, page 174

expression exp is of the same type as the declaration, i.e. the expression must be of
type typeN . Furthermore, it implicitly follows from rules [env-extension] and [env-
var-exists] (Table 8.4) that a variable of the same name as x must not have been
previously declared, within the environment Γ.

8.5 Records

As previously mentioned, the record type of the DOGS language was intentionally
left out, mainly because it is a type type, i.e. it is a type that is used to create
new types with. In the following we will give brief descriptions of legal uses for
the record type, as well as account for its evaluation. By the end of this section
it is our intention that it will be possible to check the record type along with the
formal DOGS type system, of which the record is not a part. In order to cover the
wide range of applications for a record type, we will have to walk through the three
main areas in which record types may appear. These are declarations, expressions,
and assignments. Before these situations are explored, some basic use of the record
structure is explained.

A record is used to declare a record type. This record type may then contain
declarations of variables that will only be available through the record. These vari-
ables are known as fields and are accessed through a “dot”-notation, i.e. the field f
of a record r should be accessed using the notation r.f .

8.5.1 Declarations

A record is involved in two types of declarations; one is the declaration of a new
record type, the other is the declaration of a new variable with the previously declared
record type.

The declaration of a new record type consists of an identifier for this new type,
a number of standard variable declarations, that may even be other, previously
declared, record types. These variables may be assigned with value that will be the
default value when a new variable is declared with the record type.

When a record type is declared, new variables may be declared of that type.
When doing this, the fields of the record type become available solely through the
variable of the record type. In case of multiple variables of the same record type, they
all have distinct fields. Also, when declaring a new variable of the record type, it may
initially be assigned another variable of the same record type or a record-aggregate,
both described in Section 8.5.3.

82

8. Type System in DOGS 8.5 Records

8.5.2 Expressions

Generally, an expression of a record type may evaluate to either the record type or
the type of a field contained within the record type, i.e. if a field contained the
record type is addressed (through the “dot”-notation), the evaluated type is that of
the field, otherwise the evaluated type is the record type itself.

8.5.3 Assignments

When a record type appears in an assignment command it may, as with other types,
appear on either the left side or on the right side of the command. The right side
is redundant, as the record will evaluate as an expression, and this case is described
in the previous section. The case where the record type appears on the left side, on
the other hand, is a bit more interesting. Depending on whether or not it is pointing
at a field within the record (assuming that this field is not a record type itself), the
right-side of the assignment may be an expression that evaluates to a specific type,
a record type, or the special record aggregate. In the case that the type of a record
type variable differs from any record type, the left side must be a field and the right
side of the assignment command must be an expression of the same type as that
field.

In the case that the type of a record type variable is of a record type, it may
either not address any field, or it may be adressing a field that is actually of a record
type itself. In this case, the type of the right side of the expression must be of the
same record type, or it may be a record aggregate that is well-formed according to
the respective record-type.

A record-aggregate is a collection of assignment commands. These assignments
are each a specific assignment of an expression to a field of the record. The record-
aggregate is considered well-formed iff it does not contain assignments to other fields
than those contained in the record and all assignments are legal. In case of a record
type field within a record type variable, record-aggregates may be nested.

Summary

Following this section and Appendix D, we deem that it is reasonable to assume that
DOGS programs are well typed. As mentioned in the beginning of this section, this
assumption is valuable when developing the semantics, given in the next chapter.

83

Chapter 9

DOGS Operational Semantics

In [Hüt04] it is stated that (translated from Danish)

Only an exact semantic definition can provide an exhaustive, implementation-
independent and totally precise definition of all aspects of the language.

In this chapter we will provide such a semantic definition for DOGS. The purpose
is to provide the language implementors with a complete reference to how programs
written in our language will behave on execution.

Several different semantic standards are available, however according to [Hüt04]
only operational semantics expresses how a program is executed (as changes in states
within a real or virtual machine). Because of this distinction we have found that
operational semantics is the better choice for a formal description of DOGS.

There are two main types of operational semantics: a big-step-semantics and a
small-step-semantics. The former describes the entire calculation from one configura-
tion γ to another γ′ (denoted by γ → γ′), whereas the latter describes the calculation
from γ to γ′ through a series of configurations (denoted by γ ⇒ γ′′ ⇒ . . .⇒ γ′. The
fact that DOGS will not support concurrency (cf. Section 6.11, page 50) has an
impact on the choice of the type of operational semantics since a big-step-semantics
renders modeling of parallelism impossible as commands in two concurrently exe-
cuting threads can be interleaved. However, the exclusion of concurrency in DOGS
allows for an operational big-step-semantics which is the type we have chosen.

We have already presented an abstract syntax in Section 8.4.1 when defining
the type system in DOGS. This syntax will be important for the semantics. In the
following we will present

• An environment-store-model, including

– Help functions

– Definitions of environments and stores

• Definitions of every transition systems, including

– Definitions of configurations and end configurations

– The transition relation defined by transition rules

84

9. DOGS Operational Semantics 9.1 The Environment-Store-Model

We will, however, not present our formal semantics in its complete form as it will
provide redundant information. Instead we have selected some transition rules that
represent interesting charateristica of our semantics. The semantics for DOGS can
be found in its entire form in Appendix E.

9.1 The Environment-Store-Model

The operational semantics in this chapter will make use of an environment-store-
model based on the model from [Hüt04], but is expanded to handle more than one
primitive type, multidimensional arrays, sets, graphs, and weights and labels.

9.1.1 Mathematical Shortcuts

Before explaining the appearance of our model we will introduce a notation and help
functions that will prove useful in the semantics.

The elements in the primitiveTypes category are the names of the primitive types
and the elements in the compositeTypes category are the names of the composite
types.

primitiveTypes = {integer, string, float, boolean, vertex, edge}
compositeTypes = {graph, digraph, array, set, label, weight}

In the abstract syntax we have the syntactical categories: int, str, float, and bool.
Elements of int are, for instance, -2, 5, 17, etc. Elements of str can be ”abc”, etc.
Elements of float are 3.20, etc, and elements of bool are limited to true and false.
In addition we have the syntactical infty and -infty, and the literal type of these
will be denoted infty and −infty, respectively. We assume it possible to store these
literals in our stores, thus leaving it the implementor of the semantics to make a
suitable representation of these “values”.

The underlined elements in the primitives category are the actual data represen-
tations of the types that are stored in the store tables.

primitives = {Z, string, float, bool, Loc, Loc× Loc}

We will assume that there is a semantic function defined for int, str, float, and bool:

LittType : {int, str, float, bool} → {Z, string, float, bool}

and correspondingly an inverse function:

LittType : {Z, string, float, bool} → {int, str, float, bool}

For example we can use the LittType function to get the actual integer number 10
from the syntax 10: LittType(10) = 10. Elements from bool (the values of the
syntax true and false) are denoted tt and ff .

Likewise we assume that there is a semantic function floatV alue for converting
a number (integer or float) value to a float value.

85

9.1 The Environment-Store-Model 9. DOGS Operational Semantics

floatV alue : {integer, float} → float

The function new : sto → Loc returns the free location following the last used
location in the store sto.

new(type) = size(stotype) + 1
where type = primitiveTypes ∪ compositeTypes ∪ {graphProp}

sto is a collection of all type-specific stores in our semantics:

sto = {stointeger, stofloat, stostring, stoboolean, stovertex, stoedge, stoset,

stoarray, stograph, stographProp, stolabel, stoweight}

To express that a specific store has been changed while all other stores in sto remain
unchanged, we use the notation

sto[stotype[. . .]]
where type = primitiveTypes ∪ compositeTypes ∪ {graphProp}

The recursive function Γ(sto, Loc, int) = Loc′ is used when searching for a location
of an element in the stores Stograph, StographProp, Stoset, Stolabel, and Stoweight. The
sto parameter is one of these stores, Loc is the start location of the search, and int
is the number of locations to seek forward.

Γ(sto, Loc, int) =
{

Loc if int = 0
Γ(sto, Loc′′, int− 1) where (−, Loc′′) = sto(Loc)if int > 0

Stograph, Stoset, Stolabel, and Stoweight return a 2-tuple (v, l) where v is the value
in the store and l is the location of the next value. Often we only need to change
one of the two elements in the 2-tuple and keep the other unchanged. This will be
denoted by (v,−), or (−, l) as seen in the definition of Γ, meaning that l will remain
unchanged or v will remain unchanged respectively.

9.1.2 Environments

The most simple environment in our environment-store-model is the variable envi-
ronment EnvV . In this environment variables are bound to a type and a memory
location (Loc). These locations will be considered as integers in our semantics,
which means we can add and substract locations, as if they were integers, to get new
locations.

EnvV = V ar ⇀ (typeN × Loc) ∪ Loc

86

9. DOGS Operational Semantics 9.1 The Environment-Store-Model

where typeN = primitiveTypes ∪ compositeTypes. Note that the set EnvV of
variable-environments is the set of partial functions from variables to (type, l). The
reason for it being partial functions is that we abstract from actual storage limitations
in the model and deal with an unlimited number of locations for a finite number of
variables. This argument goes for the rest of the environments as well. We will
denote an element from EnvV with envV .

The EnvC environment is the environment of global constants. We need this
environment in order to seperate the global constants with the local variables and
constants in EnvV .

EnvC = V ar ⇀ (typeN × Loc) ∪ Loc

We have defined two sets of environments for handling records in our semantics:
EnvRT for the defined record types and EnvRV for the actual record variables. A
record can contain variables and nested records and the following definitions cover
this:

EnvRT = RecordType ⇀ EnvV × EnvRV

EnvRV = RecordName ⇀ EnvV × EnvRV

A record-type contains which variables and records a specific type consists of. This
is represented by EnvV and EnvRV , which also bind the content of the record type
to some default values. When a record variable is declared it uses EnvRT to find out
what it must consist of. Actually, the only thing needed to create a record variable is
a copy of EnvV and EnvRV from EnvRT , followed by a rebinding of all the variables
in EnvV to new memory locations (so the record and the record-type content do not
share locations, which would result in conflicts). Elements from EnvRT and EnvRV

are denoted by envRT and envRV respectively.
Finally, we have the function and the procedure environments which only dif-

ferentiate from each other in the fact that we need to store the return type of a
function. This return type is either a primitive, a set, an array, a graph, or a record
type. In accordance with our selected scope rules (cf. Section 6.9, page 49) we need
to store which variables and record variables a function and a procedure have access
to. In addition we have a parameter environment (EnvPAR) that stores information
about the formal parameters of a function or a procedure.

EnvF = FuncN ⇀ S ×DecV ar ×
(typeN ∪RecordType)× EnvPAR

EnvP = ProcN ⇀ S ×DecV ar × EnvPAR

EnvPAR = N ⇀ V ar × typeN × bool

where type = primitiveTypes ∪ compositeTypes. The formal parameters of a func-
tion or a procedure is ordered, thus the parameter environment uses N to index the
parameters. The EnvPAR stores the variable name of the parameter, its type, and
whether it is a reference parameter (in that case the value of the boolean is) or not
(the boolean is then set to ff). The variable declaration block is stored in DecVar so

87

9.1 The Environment-Store-Model 9. DOGS Operational Semantics

that on every function or procedure call the variables are declared and their values
are stored in locations in the proper stores as the first thing. Elements from EnvP

and EnvF are denoted by envP and envF respectively, and elements from EnvPAR

are denoted by envPAR.

9.1.3 Stores

Our environment-store-model makes use of several stores; one store for each primitive
type and composite type and in addition stographProp which links a graph with its
weights and labels. Each store has its own set of locations (represented by non-
negative numbers in Z) and each store automatically keeps track of its size, i.e.
the number of locations that are used to store information. This integer value is
represented by size(stostring), for example. We ensure it possible to retrieve the size
of a specific store by making the domains of the stores finite. This is denoted by
⇀fin. The functions are partial because the number of locations used is finite but
can theoretically hold any value (e.g. stointeger can return any value in Z).

The store for a primitive type simply stores its primitive values in one location
for each value. Note that Loc and Loc×Loc are considered as primitive values (the
values representing vertex and edge respectively).

Stointeger = Loc ⇀fin Z
Stofloat = Loc ⇀fin float

Stoboolean = Loc ⇀fin boolean

Stostring = Loc ⇀fin string

Stovertex = Loc ⇀fin Loc

Stoedge = Loc ⇀fin Loc× Loc

Elements from these stores are denoted in the same way, only non-capitalized (e.g.
an element from Stovertex is denoted by stovertex).

To store arrays of primitives we use Stoarray, in which the primitive values are
stored directly in the locations. In the first location a reference to the first location in
the array block is stored. This reference location has been found necessary because
array variables can be bound to new array blocks by assigning one array to another.

In the array block the first location stores the number of dimensions (dims),
followed by dims locations with the sizes of the dimensions (size1,
size2, ..., sizedims). The actual content of the array is stored in the following size1 ·
size2 · ... · sizedims locations. The store function is defined as follows.

Stoarray = Loc ⇀fin primitives

Elements from Stoarray are denoted by stoarray.
Sets differentiate from arrays as they are dynamic sized. They can be considered

as kinds of linked lists and are stored by storing in the first location the size of the
set and a pointer to the location storing the first value in the set. Similarly, in this
location a pointer to the location of the next value is stored in addition to the value,

88

9. DOGS Operational Semantics 9.1 The Environment-Store-Model

etc. In the location of the last value in the set a nil pointer is stored besides the
value itself.

Stoset = Loc ⇀fin primitives× Loc

Elements from Stoset are denoted by stoset.
In resemblance to a set, a graph is stored as an integer representing the number

of vertices (the size), a location to make a reference to the graph-properties store
(the store that connects a graph with labels and weights), and a pointer to the
location of the first vertex where the name of the vertex is stored as a string. In this
location a pointer to the location of the next vertex is stored in addition to the string
name of the vertex, etc. In the location of the last vertex the pointer points to the
location that contains the first entry in the size2 adjencency matrix representation
(described in Section 2.1.2, page 19) of the graph (the matrix consists of 0′s and
1′s depending on connections between vertices). Similarly, besides the value in this
location a pointer is stored which points to the location containing the next entry in
the matrix, etc. The same store is used for both non-directed graphs and directed
graphs and this store can be referred to by Stograph or Stodigraph.

As mentioned the StographProp is used for connecting the graph with its labels and
weights and is organized with the number of properties (that is, labels and weights)
in the first location, a type denoting which of the two types label and weight is
in question, and additionally a pointer to the first location storing references to the
label and weight stores (stored as Loc). In this location a pointer to the next location
storing a reference to the label or weight store is stored along with the actual label
and weight store references.

Stograph = Stodigraph = Loc ⇀fin {Z, string, Loc} × Loc

StographProp = Loc ⇀fin {Z, Loc} × typeN × Loc

Elements from Stograph and Stodigraph are denoted by stograph and stodigraph respec-
tively, and elements from StographProp are denoted by stographProp.

Finally, we have the label and weight stores. The Stolabel is similar to Stoset, the
difference being that it holds a reference to a graph instead of the number of values
stored (this number of values equals the number of vertices in the graph) along with
a pointer to the location of the label of the first vertex in the graph. In the location
of this label a pointer which points to the location of the label of the next vertex is
also stored, etc.

Stoweight is used to store information related to the edges and is therefore orga-
nized so that the reference to a graph is stored in the first location (graphLoc) along
with a pointer to the location of the first weight. In this location a pointer to the
location of the next weight is stored and so forth (size2 locations with the actual
weights (size = stograph(graphLoc))).

Stolabel = Loc ⇀fin primitives× Loc

Stoweight = Loc ⇀fin primitives× Loc

89

9.1 The Environment-Store-Model 9. DOGS Operational Semantics

9.1.3.1 Usage of stores

In this section we briefly describe how we will make use of our defined stores in our
semantics, i.e. how we can use our stores to access specific data, such as an element
in an array, or a connection between two vertices in a graph.

Graphs: A graph is organized with its number of vertices in the first location. A
graph variable is bound to such a location and the number of vertices in the graph
can therefore be accessed simply by looking up the value of the variable-location in
the graph store. The graph properties reference is stored in the following location
(i.e. the location that the pointer in the first location points to) and can therefore
be accessed via the pointer to this location.

The following list shows how information can be retrieved from the graph store
(l is the first location in the graph and the location that a graph variable is bound
to):

• The number of vertices in the graph (n), and the location of the graph’s prop-
erties propLoc:

(n, propLoc) = Stograph(l)

• The vertices of the graph:

(vertexi,−) = Γ(Stograph, propLoc, i) where i = 1, 2, ..., n

• A connection c (1 or 0 depending on whether there is a connection or not,
respectively) between two vertices v1 and v2 in the graph (v1 is stored in
location l1 and v2 in l2):

i for which Γ(stograph, propLoc, i) = l1 and 0 < i < n

j for which Γ(stograph, propLoc, j) = l2 and 0 < j < n

c = Γ(stograph, propLoc, n + (i− 1) ∗ n + j)

• If the graph is non-directed the graph matrix is symmetric and the equivalent
connection between the two vectices can be accessed by swapping i and j in
the connection equation.

Sets: The size of a set is stored in its first location sLoc. A set variable will
reference to this first location. The data in a set is retrieved by:

• The size n of the set:

(n,−) = stoset(sLoc)

• The values v in the set:

(vi,−) = Γ(stoset, sLoc, i) where i = 1, 2, ..., n

90

9. DOGS Operational Semantics 9.1 The Environment-Store-Model

Labels: The reference to its graph is stored in the first location lLoc of the label
function. The number of vertices (elements in the label function) can therefore be
retrieved by looking up in stograph on the location of the graph.

• The location gLoc of the label’s graph:

(gLoc,−) = stolabel(lLoc)

• The number of elements n in the label function:

(n,−) = stograph(gLoc)

• The values v of the elements in the label function (ordered in the same way as
the vertices of the label’s graph).

(vi,−) = Γ(stolabel, lLoc, i) where i = 1, 2, ..., n

Weights: The reference to its graph is stored in the first location wLoc of the
weight function. The number of vertices noV can be retrieved by looking up in
stograph on the location of the graph and the number of elements in the weight
function equals noV 2.

• The location gLoc of the weight’s graph:

(gLoc,−) = stolabel(wLoc)

• The number of elements n in the weight function:

(noV,−) = stograph(gLoc)
n = noV 2

• The values v of the elements in the weight function (ordered in the same way
as the edges of the weight’s graph).

(vi,−) = Γ(stoweight, wLoc, i) where i = 1, 2, ..., n

Arrays: As mentioned, an array variable is bound to a location aLoc that refer-
ences to the first location bLoc of the block. In this location the number of dimensions
is stored which describes the following number of locations that contain the size of
the different dimensions. The data in an array is retrieved by:

• The location of the “array block”:

bLoc = stoarray(aLoc)

• The number of dimensions dim of the array:

dim = stoarray(bLoc)

• The size of the different dimensions sizei:

sizei = Stoarray(bLoc + i) where i = 1, 2, ..., dim

• A value v in the array A[i1][i2]...[idim]:

v = Stoarray(bLoc + dim + ((i1 − 1) · (size2 · size3 · ... · sizedim)
+(i2 − 1) · (size3 · ... · sizedim) + ... + idim))

91

9.2 Transition Systems in DOGS 9. DOGS Operational Semantics

[DV B-block]
envC , envF , envRT , envP ` 〈DV B1, envV , envRV , sto〉 →DV (env′′V , env′′RV , sto′′)
envC , envF , envRT , envP ` 〈DV B2, env′′V , env′′RV , sto′′〉 →DV (env′V , env′RV , sto′)

envC , envF , envRT , envP ` 〈DV B1DV B2, envV , envRV , sto〉 →DV (env′V , env′RV , sto′)

[DV R-rec-block]
envC , envF , envRT ` 〈DV R1, envV , envRV , sto〉 →DV (env′′V , env′′RV , sto′′)
envC , envF , envRT ` 〈DV R2, env′′V , env′′RV , sto′′〉 →DV (env′V , env′RV , sto′)

envC , envF , envRT ` 〈DV R1,DV R2, envV , envRV , sto〉 →DV (env′V , env′RV , sto′)

Table 9.1: Transition rules for variable declarations in blocks and records

9.2 Transition Systems in DOGS

The abstract syntax and our environment-store-model have qualified us in presenting
a selection of our semantics. We will explain parts from declarations, expressions,
and commands.

Conferring [Hüt04, page 38], a transition system is defined in the following way:

Definition 4 (Transition systems). A transition system is a tripel (Γ, →, T)
where Γ is a set of configurations, → is the transition relation, and T ⊆ Γ is a set
of end configurations.

This definition will be used when defining the transition systems for the syntac-
tical categories.

9.2.1 Declarations

In the following sections we will present transition rules for declarations of non-
composite types and composite types.

9.2.1.1 Declarations of Primitives

Our semantics for variable declarations is the transition system (ΓDV ,→DV , TDV)
where the configurations are given by

ΓDV = (DecV ar × EnvV × EnvRV × Store) ∪ (EnvV × EnvRV × Store)
TDV = (EnvV × EnvRV × Store)

This means that transitions are on the form 〈DV , envV , envRV , sto〉 →DV (env′V , env′RV , sto′),
given bindings in the global constants, function, record-type, and procedure envi-
ronments.

92

9. DOGS Operational Semantics 9.2 Transition Systems in DOGS

[Var-dec-init]
envC , envF , envRT , envP ` 〈typeN x; envV , envRV , sto〉 →DV (env′V , env′RV , sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈x := exp;, sto′′〉 → sto′

envC , envF , envRT , envP ` 〈typeN x:=exp;, envV , envRV , sto 〉 →DV

(env′V , env′RV , sto′)

[RefPar-dec]
envC , envF , envRT , envP ` 〈typeN ref x:=X; envV , envRV , sto〉 →DV

(envV [x 7→ (typeN , l)], envRV , sto)

where envV , envRV ` X → (typeN , l)
typeN ∈ primitiveTypes ∪ {array of type′N , set of type′N ,

label of type′N ,weight of type′N}

Table 9.2: Transition rules for variable and reference declarations and initialization

In Table D.18 transition rules for variables in blocks and records are given.
[DV B-block] expresses that we declare successive variables by first declaring DV B1

which changes the variable environment, record-variable environment, and store, and
then declaring DV B2 in these changed environments and store resulting in the final
variable environments and stores. [DV R-rec-block] expresses the same, the differ-
ence being that the variables are a part of a record and are therefore syntactically
separated with a comma.

The declaration and initialization of a single variable or reference variable is cov-
ered in Table 9.2. [Var-dec-init] says that a variable x of type typeN is declared,
and initialized to the value of exp, by first declaring it using the proper declara-
tion rule (depending on typeN , e.g. the rule [Var-dec] found in E.4 if typeN ∈
primitiveTypes), and initializing it to exp using the proper assignment command
(also depending on the typeN).

As to reference declaration and initialization (in relation to the declaration of
parameters) [RefPar-dec] expresses that we declare a (non-record) reference variable
x of type typeN using the keyword ref by binding x to its type and the location l
of the variable X that we want x to be a reference to. sto remains the same in the
process as no expressions are evaluated.

9.2.1.2 Graph Declarations

Table 9.3 shows the transition rules for declaring an undirected graph and a directed
graph.

[Graph-dec] tells us to declare a graph variable x using the keyword graph by
binding x to a free location l in envgraph using new. In stograph l is bound to
(0, l + 1), the first value representing the number of vertices in the graph which is
0 in the moment of declaration, the second value being the next free location in

93

9.2 Transition Systems in DOGS 9. DOGS Operational Semantics

[Graph-dec]
envC , envF , envRT , envP ` 〈graph x, envV , envRV , sto 〉 →DV

(envV [x 7→ (graph, l)], envRV ,
sto[stograph[l 7→ (0, l + 1)]
[l + 1 7→ (l′, nil)],
stographProp[l′ 7→ (0, integer, nil)]])

where l = new(stograph)
l′ = new(stographProp)

[DiGraph-dec]
envC , envF , envRT , envP ` 〈diGraph x, envV , envRV , sto 〉 →DV

(envV [x 7→ (digraph, l)], envRV ,
sto[stograph[l 7→ (0, l + 1)]
[l + 1 7→ (l′, nil)],
stographProp[l′ 7→ (0, integer, nil)]])

where l = new(stograph)
l′ = new(stographProp)

Table 9.3: Transition rules for graph declarations

94

9. DOGS Operational Semantics 9.2 Transition Systems in DOGS

[Equals1]
envC , envF , envV , envRV , envRT , envP ` 〈n1, sto〉 →n (v1, sto

′′)
envC , envF , envV , envRV , envRT , envP ` 〈n2, sto

′′〉 →n (v2, sto
′)

envC , envF , envV , envRV , envRT , envP ` 〈n1 = n2, sto〉 → (tt, sto′)

where v′1 = v′2, v
′
1 = floatV alue(v1), v′2 = floatV alue(v2)

Table 9.4: Transition rule for equality between two floats or integers

stograph. This value, l + 1, is bound to the 2-tuple (l′, nil) where l′ denotes a free
location in stographProp and nil denotes that no vertices are connected to the graph
yet. In stographProp l′ is bound to (0, nil) since no labels or weights are related to
the graph. Every other store remain unchanged.

The same happens in [DiGraph-dec], the only difference is that we use the
diGraph keyword and that the type of the variable is bound to digraph instead
of graph.

9.2.2 Expressions

Our semantics for expressions is the transition system (Γexp,→exp, Texp) where the
configurations are given by

Γexp = (exp× Store)
Texp = (V alue× Store)

Transitions are therefore on the form 〈exp, sto〉 →exp (v, sto′), given bindings in
the global constants, function, variable, record-variable, record-type, and procedure
environments.

Table 9.4 shows a single of the transition rules for boolean expressions, [Equals1].
It expresses equality between two numbers covering floats and integers (in accordance
with our design decision from Section 6.2). The evaluation of this expression is done
by first evaluating n1 to a value v1 which changes sto to sto′′. In this sto′′ n2 is
evaluated to v2 which changes sto′′ to sto′. In the clause the conditions for this tran-
sition are that the output of the help function float on v1 and v2 are respectively
the floats v′1 and v′2 which have to be mathematically equal.

[Label-val] in Table 9.5 expresses how we retrieve a label value bound to a vertex.
X represents a label variable which is seen in the clause where X evaluates to the
type label and a location lLoc. In the premise, exp evaluates to vLoc which is a
vertex value (a value of type Loc) and a changed store sto′.

Everything happens in the clause in this transition. We use lLoc from the evalu-
ation of X to yield the location of the graph which the label is connected to, denoted

95

9.2 Transition Systems in DOGS 9. DOGS Operational Semantics

[Label-val]
envC , envF , envV , envRV , envRT , envP ` 〈exp, sto〉 →exp (vLoc, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈X(exp), sto〉 →exp (v, sto′)

where envRV , envV ` X → (label, lLoc)
(graphLoc,−) = sto′label(lLoc)
(noV ertices, propLoc) = sto′graph(graphLoc)
vNo for which Γ(sto′graph, propLoc, vNo) = vLoc

and 0 < vNo ≤ noV ertices
(v,−) = sto′label(Γ(sto′label, lLoc, vNo))

Table 9.5: Transition rule for the label value expression

by graphLoc. A look-up in sto′graph on the location of the graph, graphLoc, yields
the number of vertices that the specific graph consists of, and the location propLoc.
We use Γ to find the number vNo of the vertex at location vLoc we wish to retrieve
the label value of, by searching forward in the sto′graph at propLoc until we get to the
location of the vertex vLoc. vNo is the number of vertices we had to seek forward to
get to the location vLoc. Further, we condition that vNo has to be a vertex in the
graph in question which is taken into account by 0 < vNo ≤ noV ertices. Finally,
we retrieve the value v by using Γ on sto′label to seek vNo locations forward from the
location of the label lLoc and looking up in sto′label on the location from Γ.

[Func-Call-Prim] expresses how we call a function with a return value that is
either a primitive, a graph, digraph, array, or set in DOGS (seen in the clause).
FuncN is called with the actual parameter sequence ParA (evaluated in the transi-
tion rules [ParA] and [ParA-ref] found in Appendix E, Table E.56 on page 231). The
parameter rules are on a speciel form so that the actual parameters are evaluated as
expressions in the environments known when the function is called, but are bound
to variables in the environments of the function invoked.

A look-up in envF with FuncN passed gives us FuncN ’s command S, its dec-
laration block DV , its return type typeN , and the parameter environment envPAR

bound to it.
In the premise, temp[i 7→ 0] is used to keep track on the sequence of actual

parameters in relation to the formal parameters and is vital when evaluating the
actual parameters ParA (see Section 9.1.1). This creates variable environments
env′V and env′RV and the store sto′′, with the formal parameters of the function
bound to the values of the actual parameters. In these environments the declaration
block DV is evaluated, which results in env′′V and env′′RV and the store sto(3).

The command S of the function is executed in these changed environments (the
environments after evaluating both the actual parameters and the variables in the
let-in block), but with the reserved keyword returnvalue bound to (typeN , l), and,

96

9. DOGS Operational Semantics 9.2 Transition Systems in DOGS

[Func-Call-Prim]
envPAR, envC , envV , envRV , envRT , envF , temp[i 7→ 0] ` 〈ParA, ∅, ∅, sto〉 →ParA

(env′V , env′RV , sto′′)
envC , envF , envRT , envP ` 〈DV, env′V , env′RV , sto′′〉 →DV (env′′V , env′′RV , sto(3))
envC , envF , env′′V [returnvalue 7→ (typeN , l)], env′′RV , envRT , envP ` 〈S

, sto(3)[stotypeN [l 7→ nil]]〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈FuncN (ParA), sto〉 →exp (v, sto′)

where envF (FuncN) = (S, DV, typeN , envPAR)
typeN ∈ primitiveTypes ∪ {graph, digraph, array, set}
l = new(stotypeN)
envC , envF , envV , envRV , envRT , envP ` 〈returnvalue, sto′〉

→exp (v, sto′)

Table 9.6: Transition rules for function calls on primitives

of course, in the changed store. In the clause it is noted that l is the next free
location in the store determined by typeN which is the return type looked up in the
function environment.

During execution of S returnvalue is eventually assigned to a value by the return
command (E.26), the type of which can be a primitive, graph, digraph, array, or set,
i.e. a non-composite or a composite value. Execution of S results in a changed
store sto′, which, together with the value v, is the final result of the function call
expression. v is retrieved by evaluating the returnvalue variable in sto′. If it is
a primitive, v is a concrete value stored in the location of returnvalue. If it is a
composite, v is the location of the returnvalue variable. This is accomplished by
using the transition rules for [Var-val] and [Var-val-composite] found in Appendix E,
Table E.50 on page 225.

9.2.3 Commands

Our semantics for commands is the transition system (Γ,→, T) where the configu-
rations are given by

Γ = (S × Store)
T = Store

This means that transitions are on the form 〈S, sto〉 → sto′, given bindings in
the global constants, function, variable, record-variable, record-type, and procedure
environments.

Table 9.7 illustrates the transition rule for composite commands, [Comp]. It
specifies that the composite command S1S2 is executed by executing S1 first, which
changes sto to sto′′, and then executing S2 in sto′′ which changes to sto′′ sto′.

97

9.2 Transition Systems in DOGS 9. DOGS Operational Semantics

[Comp]
envC , envF , envV , envRV , envRT , envP ` 〈S1, sto〉 → sto′′

envC , envF , envV , envRV , envRT , envP ` 〈S2, sto
′′〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈S1S2, sto〉 → sto′

where envV (return)→ (boolean, l)
sto′′boolean(l) = ff
envV (break)→ (boolean, l)
sto′′boolean(l) = ff

Table 9.7: Transition rule for composite commands

[While-true]
envC , envF , envV , envRV , envRT , envP ` 〈S, sto′′〉 → sto(3)

envC , envF , envV , envRV , envRT , envP ` 〈while b do S, sto(3)〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈while b do S, sto〉 → sto′

where envC , envF , envV , envRV , envRT , envP ` 〈b, sto〉 →b (tt, sto′′)
envV (break) = (boolean, l)
sto

(3)
boolean(l) = ff

Table 9.8: Transition rules for a while..do-loops

Both sequences of commands can contain the return command. However, this
rule tells us that the predefined return variable in envV evaluates to a boolean type
and a location l and that a look-up in sto′′ on l has to yield the value ff in order to
execute S2. This is also the case for the predefined break variable.

[While-true] in Table 9.8 specifies how the while loop is executed in DOGS. First,
b is evaluated to a value and provided that it evaluates to tt this rule is used. S is
then executed in sto′′ (sto has changed due to the evaluation of b) which changes it
to sto(3). The loop is then executed again in this new store.

As with [Comp] it is conditioned that the break variable is set to ff in order to
use this rule. Note that if S1 in [Comp], for instance, consists of a loop containing
the break command, we have to ensure that the value of the break variable is set
to ff once we leave the loop, otherwise S2 is never executed (consistent with the
transition rule [Comp-return] in Appendix E, Table E.26 on page 206). This can be
seen in the rule [While-true-break] in Appendix E, Table E.24, page 204).

[For-each-set] found in Table 9.9 describes what happens in the for-each loop
in DOGS. Informally, it executes one or several commands on each element in a set.

The clause X is evaluated to the type set and a location l. The size of the set is

98

9. DOGS Operational Semantics 9.2 Transition Systems in DOGS

[For-each-set]
envC , envF , envV , envRV , envRT , envP ` 〈foreach typeN x in X do S, sto〉 →

sto(size)[stoboolean[l′ 7→ ff]]

where envRV , envV ` X → (set, l)
envV (break) = (boolean, l′)
(size,−) = stoset(l)
envC , envF , envV [x 7→ (typeN , li)], envRV , envRT , envP `
〈if (return = false and break = false) then S, sto(i−1)〉
→ sto(i)

i = 1, 2, . . . , size

sto(0) = sto
li = Γ(stoset, li−1, 1)
l0 = l

Table 9.9: Transition rules for for-each loops for sets

retrieved by making a look-up in stoset on l which is used in the following conditions.
Given bindings in envF , envV , except that each element x in the set is bound to a
type determined by typeN and a location li which is determined by using Γ on stoset,
the location value found in the store of the previous element, and 1 as offset, envRV ,
envRT , and envP , we execute S as long as the return and break variables are set
to false. The trick is that S can consist of a return command or a break command
which entails that the following loop iterations should not execute S or evalute b.

9.2.4 Standard environment

In the standard environment of DOGS several functions and procedures for working
with graphs and sets can be found. Semantics have been worked out for these
functions and procedures (expressions and commands respectively), as specifications
of these are just as important as the specification of the syntax when having to
implement DOGS.

In this section we present the semantics for the standard environment procedures
AddEdge (graph) and AddEdge (diGraph) found in Table 9.10. The purpose of these
procedures are to, given an edge value, add 1’s in the graph store to represent a
connection between to vertices, in undirected and directed graphs respectively.

In [AddEdge-graph] the two expressions exp1 and exp2 are the first thing to be
evaluated. exp1 is evaluated in sto to a graph location gLoc and a changed store sto′′.
exp2 is evaluated in sto′′ to an edge primitive (two vertex locations) vLoc′ × vLoc′′

and a changed store sto′.
The number of vertices noV ertices and the graph properties location propLoc

is retrieved by looking up in the graph store on the graph location gLoc. The ver-
tex numbers of the two vertices in the edge is found by seeking forward with the Γ
function in sto′graph from the location propLoc, until the locations vLoc′ and vLoc′′

99

9.2 Transition Systems in DOGS 9. DOGS Operational Semantics

are reached. The vertex numbers are represented by i and j, and we ensure in the
clause that the two vertices are actually contained in the graph located at location
gLoc by the statements 0 < i < noV ertices and 0 < j < noV ertices. Finally, in the
clause, we find the proper edge locations eLoc′ and eLoc′′ (locations in the matrix
of the graph) by seeking forward using the Γ function and the vertex numbers i and
j (as described in Section 9.1.3.1 on page 90).

The [AddEdge-graph] works on undirected graphs and therefore two 1’s have
to be added to the graph matrix (due to the symmetric nature of the undirected
matrix). In the conclusion the bindings of the edge locations to the value 1 happens
in the store stograph in sto′.

The semantics for adding an edge to directed graphs [AddEdge-diGraph] is very
similar to the semantics for adding an edge to undirected graphs. The way we
differentiate between working with edges with orientation or not is illustrated in the
addEdge transition rules. When working with undirected graphs the order of the
vertex references in an edge is of no interest, since (v1, v2) and (v2, v1) represent the
same edge in the graph. When working with directed graphs, (v1, v2) and (v2, v1)
represent two different edges and therefore we only determine a single edge location
eLoc′ and bind this location to 1 in the transition rule [AddEdge-diGraph].

Summary

When reflecting on the process of defining semantics for DOGS, we can identify
several problems. The environment-store-model and the transition rules are very
detailed and low level in nature, which has some drawbacks. First of all, the complete
semantics for DOGS is very large and can therefore be a bit confusing and hard to
grasp. Some of the more complex operations in DOGS were also very hard to describe
in this low level model. Having decided to implement our language in JVM, it can be
questioned whether this level of detail is really necessary. Our semantics does indeed
define the behaviour of programs written in DOGS, and does therefore work as an
implementation guide, but JVM provides a much higher level of abstraction than our
environment-store-model (e.g., the use of objects). This can result in difficulties when
wanting to ensure that our implementation (code generation) actually corresponds
to our semantics. On the other hand we leave the possibility of implementing DOGS
to another target machine open.

Another problem with our environment-store-model is that several of our tran-
sition rules in the different semantical categories have knowledge of a lot of environ-
ments they do not actually make use of. As an example, expressions are evaluated
given bindings in envC , envF , envV , envRV , envRT , envP , although most expressions
do not use anything but the variable environments. In this case, the reason for hav-
ing knowledge to all these environments is that a function call is an expression, and
that such a call has to make declarations and do commands to evaluate to its return
value, thus expressions need to know of these environments. This lowers the read-
ability of parts of our semantics, and a modification of the environment-store-model
(e.g., the function environment) might improve it. This could be done by moving
some of the environments, that only the function-call expression needs knowledge of,

100

9. DOGS Operational Semantics 9.2 Transition Systems in DOGS

into the function environment itself, and then do a look-up when these environments
are needed.

101

9.2 Transition Systems in DOGS 9. DOGS Operational Semantics

[AddEdge-graph]
envC , envF , envV , envRV , envRT , envP ` 〈addEdge(exp1, exp2);, sto〉

→ sto′[stograph[eLoc′ 7→ 1][eLoc′′ 7→ 1]]

where envC , envF , envV , envRV , envRT , envP ` 〈exp1, sto〉 →exp

(gLoc′, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈exp2, sto

′′〉 →exp

(vLoc′ × vLoc′′, sto′)
sto′graph(gLoc) = (noV ertices, propLoc)
i for which Γ(sto′graph, propLoc, i) = vLoc′

j for which Γ(sto′graph, propLoc, j) = vLoc′′

0 < i < noV ertices
0 < j < noV ertices
eLoc′ = Γ(sto′graph, propLoc, noV ertices + (i− 1) · noV ertices + j)
eLoc′′ = Γ(sto′graph, propLoc, noV ertices + (j − 1) · noV ertices + i)

[AddEdge-diGraph]
envC , envF , envV , envRV , envRT , envP ` 〈addEdge(exp1, exp2);, sto〉

→ sto′[stograph[eLoc′ 7→ 1]]

where envC , envF , envV , envRV , envRT , envP ` 〈exp1, sto〉 →exp

(gLoc′, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈exp2, sto

′′〉 →exp

(vLoc′ × vLoc′′, sto′)
sto′graph(gLoc) = (noV ertices, propLoc)
i for which Γ(sto′graph, propLoc, i) = vLoc′

j for which Γ(sto′graph, propLoc, j) = vLoc′′

0 < i < noV ertices
0 < j < noV ertices
eLoc′ = Γ(sto′graph, propLoc, noV ertices + (i− 1) · noV ertices + j)

Table 9.10: Transition rules for addEdge from the Standard Environment

102

Summary

In this part we have documented a lot of decisions based on the analysis and we have
presented an almost complete formal definition of DOGS based on the design criteria.
The formal specification of DOGS consists of the three specifications: syntax, type
system, and operational semantics. These specifications dictate the course of action
in the implementation phase.

103

Part III

Implementation Document

105

Introduction

In this document we will discuss and account for choices made regarding the design
of the compiler. We have purposely left out any specific documentation regarding
the implementation of the compiler and included this in the design wherever nec-
essary. We did this in the opinion that the implementation is contained within the
design itself - the design reflects the implementation and vice versa. Yet, this is the
implementation part because the development of a compiler is an implementation of
a language.

This part consists of three different chapters that contain the choices that have
been made specifically in order to be able to develop a compiler, the actual design
of the compiler, and tests as well as results of these.

When describing the compiler design choices, we will emphasize the decision to
choose SableCC to assist us in creating the front-end of our compiler. This includes
discussing the consequences of this choice, while accounting for the framework, we
are presented with by using SableCC.

The chapter regarding the actual design, focuses on the three main phases of a
compilation and the design of these mechanisms in the compiler.

The tests we have conducted, will be accounted for in the last chapter in the
document. We will illustrate them and argue that our compiler is correct, although
these tests will be purely empirical.

We have chosen to let part the design document act as the analysis on which
the development of the compiler is based. Thus, we are covering all the phases of
a normal software development life-cycle, if we include the implementation that is
covered by the design, according to [MMMNS00].

106

Chapter 10

Compiler Design Choices

In this chapter we will outline the different technologies on which the compiler is
based, as well as the reasons for choosing these technologies. Choosing the target
platform for the DOGS language is rather important, however, this seems more
important when generating code than when designing the compiler as a whole. So,
although this issue is considered in this chapter, the main focus is to determine how
to develop the compiler. This is done by selecting a compiler-compiler tool to assist
us in the development of dogsc and design the remainder of the compiler based on
the “restrictions” imposed on us by the compiler-compiler tool.

10.1 Choosing a Virtual Machine

Choosing a target architecture for a compiler requires some consideration. If effi-
ciency is prioritized, one should consider writing to low level architecture, such as
the x86.On the other hand, if portability is desired, one should consider adding a
level of abstraction to the target language by writing to a virtual machine. A virtual
machine provides portability by abstracting from the hardware specific processor,
since it is built on top of the operating system. As we give low priority to efficiency
and wish to make DOGS available on many different architectures, a virtual machine
is the best choice for our target language.

10.1.1 Java Virtual Machine

The Java Virtual Machine (JVM) is a stack based virtual machine, with native
support for integers, floats, chars, and objects. It additionally supports input/output
which makes it desirable as a target platform for DOGS. JVM is distributed by
Sun Microsystems Inc [MI] and is widely used, thus making it a recognized and
well tested virtual machine. Furthermore, we all have some experience with Java
programming and thereby having some implicit experience with JVM. When using
a virtual machine like JVM it is also possible to make use of its classloader library,
which makes it easy to implement the parts of the language that can not be coded
directly in DOGS, like basic input/output, available at runtime in DOGS. It can
be implemented directly (through bytecode) for any kind of virtual machine, but it
easily gets very complex, By taking advantage of it, it is possible to implement our

107

10.1 Choosing a Virtual Machine 10. Compiler Design Choices

special graph-related types in Java and let the compiled DOGS programs make use
of them. This mainly constitutes why we believe that we will be more successful in
accomplishing our goals with the JVM as our target machine.

10.1.2 Triangle Abstract Machine

Triangle Abstract Machine [WB00, p. 178] (TAM) is a stack and heap based virtual
machine with registers and with support for the data types: integer, boolean value,
and character. It supports many standard features, however it is a virtual machine
made specifically for educational purposes and supports only limited input/output
functionality. In DOGS both the float and string types are included, and neither
of them is directly supported by TAM. Strings are possible, though complicated to
implement, due to the fact that TAM only provides characters. We do not want
to remove the float primitive from our language, thus making TAM a poor target
machine. Although the source code for TAM is free and written in Java, thus making
it possible to change and extend it, we find it more valuable to spend our resources
in other areas, rather than experimenting to extend TAM to fit our needs. All these
factors contribute to our decision of choosing the JVM over TAM as the target
platform for DOGS.

10.1.3 Common Language Runtime

The Common Language Runtime [Cor] (CLR) is another stack based machine and
yet another alternative. In contradiction to JVM it is designed to support other
source languages than Java. In CLR, weaknesses, such as JVM’s opcodes1, fixed
storage size (32 bit), and only little support for references and pointers in JVM,
have been eliminated [MM]. The main drawback of choosing CLR is that we deem
that there are no reliable versions available at the moment except for the Windows
platform. Keeping this in mind we judge that JVM is preferable over CLR.

The process of the dogsc compiler taking a program written in DOGS as input
and converting it to JVM binary code is depicted in 11.5. This is done through a
number of steps. The first step is to convert DOGS code to Java Assembler Interface
(Jasmin) code [Mey] and the second step is to have the Jasmin compiler compile the
program to JVM code, which then can be executed on a given machine M , through
the JVM interpreter.

10.1.4 Assembler Interface

When compiling for JVM, there are roughly two ways of doing this, either by creating
the bytecode for JVM directly, or by using an assembler interface, which also, can
be translated directly to bytecode. The compiler will work faster when translating
directly to bytecode, which is a tradeoff for the difficult debugging, due to the fact
that a lot of opcodes (e.g. 0xC6) in output from the compiler, can be hard to
understand. When using an assembler interface, every instruction for the target
platform, in this case JVM, is translated into readable opcodes, like ifnull. It is

1Instructions with similar functionality but different input types have different opcodes, e.g.
iload, fload, aload,etc.

108

10. Compiler Design Choices 10.2 Compiler Passes

.....................
..........
........
........
.........
..........

...
..........
........
........
.........
..........

...
..........
........
........
.........
..........

...

..
.................

.................
..........

..
.................

.................
..

.................
.................

..........

P P P

DOGS DOGS JASMIN JASMIN JASMIN JVM JVM

JVM

M

M

JVM JVM

JVM

M

M

JVM

M

M

Figure 10.1: Tombstone diagram of the dogsc compiler

easier to survey the output from the compiler, thus making it easier when debugging.
Since this is our first time making a compiler, we asses it to be an error-prone process
generating bytecode, thus making debugging a necessary part of creating dogsc, and
therefore, we have chosen to use an assembler interface when creating the bytecode
for JVM.

There are a few different assembler interfaces for JVM, but they are very poorly
documented which makes it very hard to choose. Our choice is Jasmin as the assem-
bly interface used for our compilation, because it has been used since 1996 and came
recommended by the lecturer in the “Languages and Compilers” course. Jasmin has
some features which makes it easier to jump in code, e.g. when creating looping
structures.

10.2 Compiler Passes

One main issue in compiler design is the issue of how many times the compiler should
pass through the source code in order to produce an output. Generally, there are two
options; either it is all done in a single pass or it is done in multiple passes. This is
an important consideration and a well-founded decision needs to be taken before the
actual compiler design can be commenced [WB00]. In fact, it is not even possible to
choose a front-end tool to assist in the development of the compiler without knowing
whether the compiler should be a multi-pass compiler.

Deciding whether to go with a single or a multi-pass compiler is, to a large ex-
tent, a tradeoff between different properties of the compiler. For instance, if speed of
the compilation process is an issue, a single-pass compilation is definitely preferable,
but if flexibility has higher priority, a multi-pass compiler should be used [WB00].
The mentioned properties are all related to the compiler itself, however, even the
language, in our case DOGS, may have some properties that restrict the compilation
of the language. If this is case there might be no choice but to go with a multi-
pass compiler. If the language does not have these properties we can choose freely.
Although properties like memory consumption (that also favors single-pass compi-
lation) and speed are not as important to dogsc as flexibility, these properties are
not determining factors when deciding whether to use a single or multi-pass com-

109

10.3 Syntax Trees 10. Compiler Design Choices

pilation. This is because DOGS actually do impose restrictions on the choice. In
DOGS, functions and procedures can be declared in any arbitrary order, and they
can be called from any other function or procedure. This property of DOGS requires
the compiler to know of all functions and procedures before any type-checking can
be done, i.e. dogsc must use one pass just to identify all the properties of each
function and procedure, hence dogsc must be a multi-pass compiler. This is unlike
a programming language like C, in which the programmer has to specify headers for
all functions and procedures before the main procedure is declared.

10.3 Syntax Trees

When creating a multi-pass compiler it is necessary to store the structure of the
source code being compiled, as it is only parsed once. This is often done as a tree
structure, known as a parse tree or syntax tree. In this section two such trees will
be presented; the concrete syntax tree, CST, and the abstract syntax tree AST.

10.3.1 Concrete Syntax Trees

Technically, CSTs are parse trees with exactly one node for each token. Consider
the DOGS expression that consist of a simple multiplication (Listing 10.1):

1 . . . 3 ∗ 3 . . .
Listing 10.1: An expression in DOGS

A CST for the DOGS arithmetic expression in Listings 10.1 is illustrated in Figure
10.2, and from this example it is clear that many nodes (and thereby tokens) are
redundant and convey no useful information. It follows that such a parse tree may
be inconvenient to use directly, i.e. in order to evaluate the expression, one has to
traverse through more than fifteen nodes!

Often grammars need to be modified in order be able to be parsed as well as
they often contain constructs that allow semantics to be part of the grammar (e.g.
precedence rules that are part of the grammar). A major reason why so many
seemingly useless nodes are traversed in the DOGS expression is exactly that many
modifications were applied to the grammar in order to avoid ambiguities and to
maintain rules of precedence. However, since the parse tree has already been built,
all these extra nodes are not needed in order to perform the contextual analysis
[App99].

Alternately, some of these modifications could be left out when constructing the
parse tree, thus creating an AST.

10.3.2 Abstract Syntax Trees

As the name implies, an AST is generated from the abstract syntax of a grammar.
An abstract syntax provides a clean mapping between the parser and later stages
of the compilation by conveying the phrase structure of the program while ignoring
the semantics of the language [App99]. An AST of the DOGS expression in Listings
10.1, based on the abstract syntax presented in Section 8.4.1, is shown in Figure
10.3.

110

10. Compiler Design Choices 10.4 Discussion of Compiler-Compiler Tools

..............................
..............................

..............................
..............................

............

..............................
..............................

..............................
..............................

............

Expression

Assign-Expr

And-Expr

Or-Expr

Compare-Expr

Less-Greater-Expr

Not-Expr

Plus-Minus-Expr

Multiplication-Exr

∗Concatination-Expr Concatination-Expr

Primary-Expression

Integer-Literal

3

Primary-Expression

Integer-Literal

3

Figure 10.2: A CST for the DOGS example 10.1

..............................
..............................

..............................
..............................

............

..............................
..............................

..............................
..............................

............

n

3

opn

3

exp

∗

Figure 10.3: An AST for the DOGS example 10.1

The choice of syntax representation through a tree is related to the choice of
compiler-compiler tool, which we will discuss in the next section.

10.4 Discussion of Compiler-Compiler Tools

A compiler consists of a front-end as well as a back-end. The front-end consists of
a lexer (scanner), that generates tokens from source file, and a parser that checks
the order of the tokens. As it appears both the lexer and parser have well-defined
purposes and are both, to some extent, based on the grammar of a language.

The task of constructing these parts of the compiler is rather mechanical [Gagb,
chapter 1, page 1]. Hence, there are tools that can assist in the generation of lexers
and parsers. There are different tools available and although they basically perform
the same basic tasks, differences still distinguish them from one another. Therefore
it is important to make an aware choice as to what tools are to be used before
designing the compiler. In the following we will present JavaCC [Inc], Jlex [BA]
and CUP [Hud], and SableCC [Gaga], which are all tools for generating lexers and
parsers. These presentations will be with emphasis on the tool of choice that is to

111

10.4 Discussion of Compiler-Compiler Tools 10. Compiler Design Choices

assist us in the development of the compiler for DOGS. We will also argue why this
particular tool has been chosen over the other tools.

10.4.1 SableCC

We have chosen to use SableCC to construct the lexer and parser. One of the main
reasons for this choice is that it is relatively easy to use due to the fact that the
syntax of the input needed in order to generate both the parser as well as lexer is
fairly simple compared to other available front-end tools. The input is in the form
of a SableCC specification that contains the lexical definitions and the grammar
productions (written in Extended Backus-Naur Form, EBNF) of the language to be
recognized by the generated compiler framework [Gagb].

Another reason for choosing SableCC is that the grammar of our language is
suspected to be a LALR grammar and proven to not be an LL grammar (see Section
7.3.3 on page 71), thus a recursive descent parser will not be able to recognize the
DOGS language. SableCC provides a parser with a bottom-up parsing strategy,
enabling it to recognize LR0, LR1, SLR, and LALR grammars and thereby making
it a choice that is more than acceptable for our front-end [Tho, slides for lecture 5].

On top of all this, SableCC generates an object-oriented framework which builds
an AST. In this framework the source code of the lexer and parser is isolated from
the code generator or interpreter (that has to be build manually at a later stage).
The fact that it provides an object-oriented framework should also give us the ability
to easily comprehend the SableCC generated classes, since we all have experience
from the object-oriented paradigm.

When using SableCC it is not necessary to include any action code in the gram-
mar file. Instead, an extension of the Visitor pattern (discussed in Section 10.5.1)
on the AST (which the parser generates) is used to add action code to the compiler
or interpreter [Gagb]. The use of this pattern makes it relatively easy to debug the
compiler since what has been written is easily identified, and in case the grammar
works the error has to reside in the code. As an additional benefit it would suffice
to recompile this one part of the compiler. Alternatively, a tool, in which the action
code is placed in the grammar file, will typically implement the code in the source
code of the parser. This makes debugging more difficult as it is a tedious task to
identify the action code amongst the automatically generated code [Tho, slides for
lecture 5].

10.4.1.1 The Sable Generated Syntax Tree

As previously mentioned, the compiler front-end, generated by SableCC, generates
an AST in the parsing process. This AST, however, is basically equal to a CST,
as it contains a node for each token in the file that is parsed. From section 10.3, it
seems clear that this is not the optimal AST, so luckily SableCC provides means for
modifying it.

One way to do this modification is to create a new class that inherits from the
parser class generated by SableCC, and then let this new class modify the AST as
it is constructed [Gaga].

Another way to modify the AST is by using functionality available on all nodes

112

10. Compiler Design Choices 10.4 Discussion of Compiler-Compiler Tools

in the AST. This method allows one subtree to be replaced by another and thereby
changing the AST [Gaga].

SableCC has made the design decision that tree nodes can not be modified, only
the relations between nodes can be altered. The advantage of this is that it is
guaranteed that the tree will not be corrupted, however the drawback is that it is
not possible to decorate the tree with references to other nodes or other information.

In short, using SableCC is a matter of knowing the Visitor design pattern, and
because the action code is separated from the rest of the code it should be feasible
to locate errors and correct them.

10.4.2 JLex and CUP

Alternatively, one tool can be used for building the scanner and another tool for
building the parser. JLex and CUP are such tools, they build a lexer and a parser
respectively. These tools can be used independently of each other, allowing different
combinations of tools. Although CUP generates a parser based on LALR grammars
[Hud] as needed by the DOGS language, this combination of tools has some draw-
backs. First of all, it is necessary to have different input files for the two tools, both
containing different action code. This is not a property that we find alluring. In
fact, having two files instead of one makes this approach less desirable compared to
a single file solution which, in our opinion, would be more comprehensible, especially
because overlaps between the two different input files will occur (both JLex [BA] and
Cup [Hud] input files must contain a list of tokens). Furthermore, as stated earlier,
the fact that action code is embedded into these files decreases the comprehensibility
of the generated code, thus rendering it more complex and difficult to debug.

Another important reason for choosing SableCC over the JLex and CUP solution
is that CUP generates a parser, but this parser does not produce an AST, and there
are, to our knowledge, no tools available to generate an AST with CUP. This means
that CUP is for single-pass compilers and not, as the compiler for DOGS should be,
for multi-pass compilers.

It may also be noted that the use of action code within the grammar, as in both
CUP and JavaCC, is basically equivalent to using attribute grammars. Generally,
attribute grammars have “gone out of fashion” [Tho, slides for lecture 4], which
further makes SableCC as the front-end tool for DOGS the more obvious choice.

10.4.3 JavaCC

As to JavaCC we have identified some drawbacks in the tool. The first drawback
is that JavaCC uses action code in its grammar file [Inc]. This, as mentioned in
Section 10.4.1, makes it harder to debug. A second drawback is that JavaCC does
not support automatic creation of an AST to be used as output from the parser.
If an AST is wanted, another tool besides JavaCC has to be used [Inc] (unless, of
course, one desires to separately write the AST-generating code), whereas this is
supported in SableCC.

However, even if these drawbacks had not been rather severe issues, we still would
not have used JavaCC due to the important property of DOGS grammar that it is

113

10.5 SableCC Framework 10. Compiler Design Choices

Syntactial
Analysis

.. ..
Code

Generation OutputInput Analysis
Contextual

Figure 10.4: Compilation phases

a LALR grammar. Since JavaCC creates a recursive descent parser it would not be
possible for JavaCC to create a parser for the DOGS grammar.

10.5 SableCC Framework

Choosing SableCC obviously has some consequences for the design of dogsc, because
the parser is essential for the compiler and SableCC generates the parser used in
dogsc. Not only does SableCC generate a parser, it also generates a framework that
allows the compiler to pass through source code written in DOGS multiple times.
This is done by creating an AST that, although equivalent with the corresponding
CST, dictates the design of the rest of the compiler to a large extent. The basic
framework created by SableCC is explained in the remainder of this section.

Developing a compiler with SableCC consists in ([Gagb, p. 22-23, ch. 3.2]):

1. Writing a grammar specification file (The DOGS grammar file can be found in
Appendix C).

2. Running SableCC on the grammar file.

3. Writing worker classes inheriting from the SableCC generated framework that
work on the CST .

4. Writing a main compiler class which uses the lexer, parser, and working classes
from step 3.

5. Compiling the classes to compile the executable compiler.

SableCC generates a Deterministic Finite State Automaton (DFA) which recog-
nizes the DOGS language, also known as a lexer, a LALR(1) parser, and a framework
to build classes that work while walking the AST, known as workers. The framework
generated consists of the four packages: analysis, node, lexer, and parser. These four
packages include everything needed to construct a specialized tree walker. In order
to explain how a tree walker is constructed we will summarize the Visitor pattern
and the rest of the SableCC framework.

10.5.1 Visitor Pattern

When working on larger data structures, e.g. lists or trees with objects of different
types, it can be difficult to gather information from the objects. The Visitor pattern
provides a mechanism for gathering information from a number of different objects

114

10. Compiler Design Choices 10.5 SableCC Framework

without determining the actual type of the objects. Determining the type of a given
object however is not a simple task.

A naive approach could be to do this through simple branching statements as
illustrated in Code Listing 10.2. This, however, has got worst time complexity
equivalent to the number of types and this is where the Visitor pattern comes into
the picture.

1 void determineType (Type obj) {
2 i f (obj instanceof Type1) {
3 System . out . println (‘ ‘ Type1 ’ ’) ;
4 } else {
5 i f (obj instanceof Type2) {
6 System . out . println (‘ ‘ Type2 ’ ’) ;
7 }
8 . . .
9 else {

10 System . out . println (‘ ‘ TypeN ’ ’) ;
11 }
12 }
13 }

Listing 10.2: Determining types

The main idea is to move some functionality away from the objects and into a
Switch interface. This new Visitor interface contains methods for visiting different
objects, denoted visitObject, and takes an Object as parameter is listed in Code
Listing 10.3.

1 interface Switch{
2 void visitType1 (Type1 obj) ;
3 void visitType2 (Type2 obj) ;
4 . . .
5 void visitTypeN (TypeN obj) ;
6 }

Listing 10.3: the Switch Interface

1 abstract class Type{
2 abstract void accept (Switch sw) ;
3 }
4
5 class Type1 extends Type{
6 void accept (Switch sw) {
7 sw . visitType1 (this) ;
8 }
9 }

Listing 10.4: Classes of types

115

10.5 SableCC Framework 10. Compiler Design Choices

1 class TypeSwitch implements Switch{
2 void visitType1 (Type1 obj) {
3 System . out . println (‘ ‘ Type1 ’ ’) ;
4 }
5 void visitType2 (Type2 obj) {
6 System . out . println (‘ ‘ Type2 ’ ’) ;
7 }
8 . . .
9 void visitTypeN (TypeN obj) {

10 System . out . println (‘ ‘ TypeN ’ ’) ;
11 }
12 }

Listing 10.5: The TypeSwitch

1 String determineType (Type obj) {
2 obj . accept (new TypeSwitch ()) ;
3 }

Listing 10.6: Accepting the TypeSwitch

In order to create a Visitor, the interface providing the visitObject methods is
simply implemented as shown in Code Listing 10.5.

The object classes must have a specialized accept method that takes a Visitor
as argument. The apply method will call the appropriate method on the Visitor
object. Thus, it is possible to call the right method without the need to determine
the class of the object.

10.5.2 Extended Visitor Pattern

Although the Visitor pattern provides high abstraction on a number of objects, it
does have some flaws. Extensibility is expensive, because in order to introduce a new
type of object it is urgent to add a new visit method to the Switch class in addition
to creating the new class. To remedy this, SableCC introduces the Extended Visitor
pattern.

The extended Visitor pattern introduces an ancestor interface for all the type
classes called Switchable. Adding a new type imposes to create a new interface
extending Switchable which provides a new visit method for the new type. A
class can then be defined to implement the new extended interface, hence creating a
visitor.

SableCC however has applied other names, than the usual Visitors pattern.
visitObject methods are called caseAObject and the accept method is called
apply.

10.5.3 SableCC Classes

SableCC uses the Extended Visitor pattern to generate the classes shown in Figures
10.5 and 10.5. These classes contain all that is needed to build a worker tree-walker.

116

10. Compiler Design Choices 10.5 SableCC Framework

Switch

Analysis

AnalysisAdapter

DepthFirstAdapter

...............................
.........
.........
....

...............................
.........
.........
....

...............................
.........
.........
....

ReversedDepthFirstAdapter

Figure 10.5: SableCC hierarchy for Switch

Besides that, SableCC also builds the packages lexer and parser, which constitute
the syntactical analysis part of the compiler.

Two of the more interesting classes generated by SableCC are the DepthFirstAdapter
and ReversedDepthFirstAdapter, descendants of the Switch interface. These are
built of a number of caseANode(ANode node) methods that ensures that every node
in the AST is visited.

To implement a worker tree-walker, you extend either of these two classes and
overwrite the caseANode(ANode node) methods.

The constructed AST is pieced together by nodes representing grammar rules
and tokens, which is pictured in Figure 10.6.

The nodes can be split up into three different categories: Ttoken, Pproduction and
Anode+production. The latter is the kind of node actually visited through the case
methods and it has Tokens as children. All Productions have more productions or
Anode+production as their children.

On the nodes, information such as the actual string tokens, line number and
references to parents and children are stored on the object.

117

10.5 SableCC Framework 10. Compiler Design Choices

Start EOF

Anode+production

Ttoken

...............................
.........
.........
....

...............................
.........
.........
....

...............................
.........
.........
....

...............................
.........
.........
....

Switchable

Node

Pproduction Token

Figure 10.6: SableCC hierarchy for Switchable

118

Chapter 11

Compiler Design

The job of a compiler consists of three things: it must do a syntactical analysis, a
contextual analysis, and code generation. In this chapter we document the design of
these three phases as well as the design in general, which is covered in Section 11.1
. In spite of the fact that the design of the lexer and parser is defined by SableCC
we will still comment on this design, and although runtime organization is included
as a chapter of its own, it is intended to act as a design for the code generation,
describing how to overcome issues such as mapping an imperative language to the
object-oriented platform JVM.

11.1 Compiler Considerations

Our compiler consists of the classes depicted in Figure 11.2. In general the compiler
is split up into several passes, each with their own responsibility. We will look closer
at them the following sections. First we will have a inspect the data structures
utilized by the compiler, namely StandardEnvironment, Library, and ErrorList.
After that we will present the different packages that constitute the dogsc compiler.

11.1.1 StandardEnvironment

The StandardEnvironment class consists of information about the types available in
DOGS. When new record declarations are encountered they are added to an instance
of this class at compile time. The instance is resident through the whole compile
process. This class is not related to the standard environment descrpied in the design
document.

11.1.2 Library

To ensure that imported DOGS packages, both selfdefined and the standard library,
are available at compile time, the compiler uses the Library class. It uses two
HashMaps to store the known functions and procedures, as well as their interfaces.
The information includes formal parameter sequences, return values, and package
names, which is packaged in our self defined IFace object.

The class itself makes use of the Java ClassLoader and Class classes, to query
a class-file for information, which is then written to the HashMaps. Note that the

119

11.1 Compiler Considerations 11. Compiler Design

environment

treeprinters

test

types

analysis

contextual

helpers

codegeneration

helpers

probers

lexer

libraryhandler

node

parser

optimiser

compiler

dogs

cs
auc

dk

Figure 11.1: Overview of the compiler structure

Library is built for the DOGS language only, therefore some restrictions apply.
For instance, in order to avoid namespace conflicts, only one instance of a function
or procedure name is allowed. It should also be noted that the Library can only
guarantee the presence of a given class file at compile time. At runtime there is no
such guarantee.

11.1.3 ErrorList

The ErrorList is a static class that accumulates error messages generated by the
checker classes. When an error is encountered, an error description and the appropri-
ate TToken node is stored in the ErrorList. After each checker has been applied to
the CST, these messages are printed to the screen and the compile process is halted,
given any. The output error messages consists of a line number gathered from the
TToken and the description.

11.1.4 Packages

Briefly put, present the packages in the dogsc are:
The dk.auc.cs.dogs.compiler.* contains all parts of the compiler. It can be

further divided into smaller parts, in which we find the SableCC generated pack-
ages analysis, lexer, node, and parser. Our own worker classes are located in
contextual, codegeneration, libraryhandler, and optimiser.

120

11. Compiler Design 11.2 Syntactical Analysis

The dk.auc.cs.dogs.environment.* contains the implementation of the stan-
dard environment and the DOGS types.

The dk.auc.cs.dogs.test.* contains all the unit tests made during the imple-
mentation phase.

The dk.auc.cs.dogs.treeprinters.* contains handy tools for getting an overview
of a given sourcefile.

11.2 Syntactical Analysis

The purpose of the syntactical analysis is to ensure that the source code is syntac-
tically correct. This can be split in two tasks: lexical analysis and parsing.

Lexical analysis, is mainly, scanning the sourcefile in order to create a stream
of tokens. This stream is passed on to the parser, which determines the phrase
structure of the source program, and ensures that it is correct. The output of the
parser is a well stuctured datatype containing the source program, which in modern
compilers often is a tree.

The syntactical analyser is basically a DFA (deterministic finite automaton),
which has an accept state for every valid construct in the language. When it en-
counters errors it generates an error report and shifts back to the last known safe
state and continue analysis.

The reason for this behaviour is that it tries to collect as many errors as possible
in a single analysis of the source code.

Creating a piece of software that implements the above mentioned functionality
is rather mechanical, yet lengthy, task, which is exactly why we use SableCC to do
this.

11.3 Contextual Analysis

Knowing that the source program is syntactically well formed the contextual analysis
can commence. This analysis is a series of checks to see whether the program abides
to the contextual rules or not. The structure of the dogsc contextual analyzer will
be presented in the following.

11.3.1 Optimizer

The Optimiser class reduces constant expressions, a term that is also known as
constant folding. Optimizations are performed on string, arithmetic and boolean
expressions. Consider the example in Code Listing 11.1.

1 . . .
2 l et
3 f loat f := 4 + 8 ∗ 3 . 1 4 ;
4 boolean b := 3 <= 4 and 2 > 1 ;
5 in
6 begin
7 i f true then

121

11.3 Contextual Analysis 11. Compiler Design

..
.........
...........
........

Main

TypeProber

.........
.........
.........
...................................

.........
.........
...................................

DepthFirstAdapter

−caseXxx

−InXxx

−OutXxx

.........
.........
.........
...................................

Lexer

Parser

Node

StandardEnvironment

ErrorList

Library

Checker

.........
.........
.........
...................................

Checkers

CodeGenerator
Optimiser

−caseAExpression

−caseASingleOpenCommand

−caseASingleClosedCommand

Probers Optimisers

TypeOptimiser

Figure 11.2: Class diagram for the contextual phase

8 print (” string ” & ” concatenation ”) ;
9 else

10 print (” this is obsolete ”) ;
11 print (f) ;
12 end
13 . . .

Listing 11.1: Constant folding in dogsc

In the let-in block we notice that both the float and the boolean expressions can
be reduced dramatically, by replacing the float expression with 29.12 (4+8∗3.14 =
29.12) and the boolean expression with true. Also the string expression in line 8 is
needlessly large. The optimizations are possible since the values in the expressions
are known at compile time.

This kind of optimization is precisely what the Optimiser class does. It applies
the following optimizers in the order given here on expressions:

• StringOptimiser

• ArithmeticOptimiser

• BooleanOptimiser

It also applies a BranchingOptimiser to single commands, which tries to de-
termine branching statements that can be determined to be constant or dead code.
When successful it replaces if then <S1> else <S2> expressions with either
<S1> or <S2>, depending on the boolean value .

122

11. Compiler Design 11.3 Contextual Analysis

After these transformations to Code Listing 11.1, a number of things have been
reduced, which is shown in Code Listing 11.2.

1 . . .
2 l et
3 f loat f := 2 9 . 1 2 ;
4 boolean b := true ;
5 in
6 begin
7 print (” string concatenation ”) ;
8 print (f) ;
9 end

10 . . .
Listing 11.2: Applied constant folding in dogsc

All expressions can, however, not always be optimized, so in order to determine
whether an expression can be optimized, the Optimiser classes launch Probers on
the expressions.

The Prober classes traverse the subtree on which they are applied and accumu-
late relevant information, e.g. arithmetic operators, integer and float literals, and
parenthesis for arithmetic optimization. These are stored in the Prober object. Be-
low we have listed the prober classes in DOGS as well as the abstract superclass
they all inherit from.

- TypeProber

- StringProber

- ArithmeticProber

- BooleanProber

- InftyProber

- BranchingProber

From the collected data the Optimiser can determine wether an expression can
be optimized or not. An expression can be optimized only if the Optimiser can
break the expression down to a subtree with only a case-specific number of pieces of
stored information.

11.3.2 Contextual Checks

The abstract class Checker extends DepthFirstAdapter, thereby making it a tree
walker. These properties are inherited by a number of different checkers:

- Checker

- BreakChecker

- ReturnChecker

123

11.3 Contextual Analysis 11. Compiler Design

- MainProcedureChecker

- DivisionByZeroChecker

- TypeChecker

BreakChecker traverses the tree looking for break commands out of place. ReturnChecker
checks that defined functions contain return statements. It also asserts that no re-
turn commands are placed out of context which includes checking that eventual
branches have a valid return statement. The MainProcedureChecker assures that
declared program files contain a main procedure with the necessary arguments. It
also confirms that a file declared to be a package does not contain a main procedure.
DivisionByZeroChecker traverses the tree, ensuring that there are no divisions,
integer divisions, or modulo by zero.

These are all simple classes with little complexity. The TypeChecker class, how-
ever, is rather complex and will be discussed in the following section.

11.3.3 TypeChecker

Type checking is the activity of enforcing the typing rules of a given language. In
this case the rules of Section 8 have to be enforced. DOGS is a statically typed
language, and therefore a key property is that a compiler is able to detect any type
errors without actually running the program. When compared to dynamic (run
time) typechecking, static typechecking is by far more efficient as type errors are
discovered sooner and the type checking mechanism does not degrade performance
because no run-time type checking is necessary [WB00].

In this section the possibilities for contextual analysis (typechecking, essentially)
based on the framework provided by SableCC will be explored. Following this, the
typechecking mechanism of dogsc will be described which includes an overview of
the different classes contained within the typechecker. .

11.3.3.1 SableCC and Typechecking

Since dogsc is a multi-pass compiler, the results of the contextual analysis should be
recorded for further use. This is often referred to as decoration of an AST [WB00].
There are a number of ways this is usually done, and some methods that have proved
useful have in common that they store the information directly in the AST [WB00].
However, as explained, SableCC does not allow storing information on the nodes in
the AST, and therefore dogsc stores everything in separate tables.

11.3.3.2 The dogsc Type Checker

This section describes the inner workings of the dogsc typechecker and to some
detail how it is implemented. An overview of the different classes that make up the
typechecker is presented in Figure 11.3 and will be described here.

124

11. Compiler Design 11.3 Contextual Analysis

+ inXXX

- idName: String
- StandardEvironment
- IdentificationTable

FormalParameterSequenceExtractor

+ evaluate(PExpression)
+ getFlag()
+ getType()

+ isAConstant()
+ remove(String)
+ retrieve(String)
+ loadRecord(String)
+ saveRecord(String)
+ insert(String, Node, boolean)

- recordNames: ArrayList

- constant: boolean
- elements: HashMap
- records: HashMap

- idRecord: RecordTableElement

IdentificationTableRecord

+ enter(String, String, String, boolean, node)
+ openScope
+ closeScope
+ loadScope
+ getIdentifier(String)
+ findeNodeType(node)

- data: HashMap
- elements: HashMap

IdentitiesAndTypesTable
- type: String
- flag: String
- castType: String
- constant: boolean
- node: Node

IdentitiesAndTypesTable

+ getType()
+ getFlag()
+ isConstant()
+ getNode()
+ getCastType()

- lib: Library
- IdentificationTableRecord
- FunctionProcedureProber
- libName: String
- flag: String

+ caseXXX
+ inXXX
+ checkType(String, AVName)

PackageImporterChecker

- names: HashMap
- types: HashMap
- flags: HashMap
- returnValues: HashMap
- FunctionProcedureProberFps

+ getNames(String)
+ getTypes(String)
+ getFlags(String)
+ getReturnType(String)
+ setNames(String, ArrayList)
+ setTypes(String, ArrayList)
+ setFlags(String, ArrayList)
+ setReturnType(String, ArrayList)
+ isInTable(String)

FunctionProcedureProber

.............................
...............
........................

+ enter(String, Node, boolean)
+ retrieve(String)
+ isInTable(String)
+ isConstant()
+ openScope()
+ closeScope()
+ findNodeType(Node)

- levelTable: LinkedList
- levelMap: HashMap
- info: ArrayList
- isConstant:. boolean

- type: String
- idTypeTable: IdentititesAndTypesTable

- flag: String

IdentificationTable

...........
...........
.........
.....................................

...
.........
............

....

- typeToMatch: String
- stackSymbol: String
- stack: Stack

- fullEvaluation: boolean
- flag: String
- needToEvaluateParameters: boolean

- idTable: IdentificationTable
- prober: FunctionProcedureProber

- idRecord: IdentificationTableRecord
- procedureCallName: String
- isRecord: boolean
- notInStack: int
- tmpType: String
- unaryInStack: boolean
- equalsInStack: boolean
- labelOrWeight: boolean
- divInStack: int
- labelOrWeightType: String
- typeWL: String

+ caseXX
+ inXXX
+ isRightType()
+ getFlag()
+ setFullEvaluation(boolean)
+ compareTypes(String, String)

MultiTypeChecker

+ inXXX
+ getType()

TypeDenoterExtractor

- al: ArrayList

...
.........
............

....

- PackageImporterChecker

- lastType: String
- isAConstant: boolean
- lib: Library
- idTypeTable: IdentitiesAndTypesTable

- idTable: IdentificationTable

- prober: FunctionProcedureProber
- idRecord: IdentificationTableRecord

- stdEnv: StandardEnvironment

- procedureCallName: String
- nameToReturn: String
- labelWeightFound: boolean
- labelOrWeight: String
- labelOrWeightType: String

- findNodeType(Node, TAssign)
- compareTypes(String, String)
+ caseXXX
+ outXXX
+ inXXX

TypeChecker

...
.........
............

....

+ getNode()
+ getConstant()

- node: Node
- constant: boolean

RecordTableElement

...
.........
............

....

+ caseXXX
+ inXXX
+ outXXX

- IdentificationTable
- IdentificationTableRecord
- StandardEnvironment
- isAConstant: boolean
- lastType: String
- mainRecordName: String

- recordTypeChecker
- isRecord: boolean

RecordIdentitiesAndTypeExtractorChecker

.............................
...............
........................

- currentRecordName: String
- castType: String
- StandardEnvironment
- IdentificationTableRecord
- IdentificationTable
- lastType: String
- braceLevel: int

+ inXXX
+ caseXXX

RecordTypeChecker

...........
...
....

...
.........
............

....

...
.........
............

....

...
.........
............

....

...
.........
............

....

...........
...........
.........
.....................................

...
.........
............

....

- stdEnv: StandardEnvironment
- types: ArrayList
- names: ArrayList
- flags: ArrayList

+ caseXXX

+ getNames()
+ getTypes()
+ getFlags()

+ inXXX

FunctionProcedureProberFps

........

....................................

.........
..

.........
...

..

.........
.......................

..........
........
......

..........
........
......

ExpressionEvaluater

- type: String
- flag: String
- name: String

- idTable: IdentificationTable
- prober: FunctionProcedureProber

Figure 11.3: TypeChecker class diagram

125

11.3 Contextual Analysis 11. Compiler Design

The Classes

• TypeChecker: The TypeChecker class is the heart of the typechecker. It is
from this class the different subtrees in the CST are evaluated.

When initiated, the first responsibility of this class is to probe the AST to
identify functions and procedures, which is necessary due to the scope rules for
functions and procedures (cf. Section 6.9) (functions and procedures need not
be declared in any particular order).

Subsequently, the PackageImporterChecker is applied which will import the
packages defined in the source code and check that all function and procedure
invocations are defined in one of the compiled packages, or in the source code.
From this point the real type checking starts following the flow of the source
code and makes type checking on every expression, assignment, etc.

• PackageImporterChecker: In this class we use the library to import pack-
ages defined in the source code and in the standard library. To accomplish this,
we use the FunctionProcedureProber to traverse the CST to find function and
procedure calls. If the calls originate from a package we insert them into the
function probe so they can be of use later in the typechecker to evaluate the
calls.

• MultiTypeChecker: Almost every other class in the type checker relates
to this class in form of an aggregation. It is used to evaluate expressions and
variable name extensions, for instance, and is made as a universal type matcher.
It takes a type in the form of a Java String and checks that the node it has
been applied to is of the correct type.

The MultiTypeChecker is implemented by a Stack. When, for instance, find-
ing a variable during evaluation of an expression and its type matches the
String passed to the MultiTypeChecker, it pushes the type on the stack. If
the type of the variable does not match String, the symbol “!!” will be
pushed on the stack.

When the MultiTypeChecker has traversed the expression tree, the method
isRightType is invoked, which then evaluates the stack to check whether or
not the expression was true in relation to the String passed.

• ExpressionEvaluater: The ExpressionEvaluater class is a front-end to
the MultiTypeChecker. Instead of matching against a single type it uses the
MultiTypeChecker to try to match against every known type in DOGS and
returns this type, should it find a match. This information is then used in the
typechecker to make an evaluation of function or procedure calls for instance.

• FunctionProcedureProber: The FunctionProcedureProber is used to anal-
yse the CST for functions and procedures. The reason for this pre-analysis is
that we need some kind of insight into which functions and procedures are
available in the source code. If this probing was not performed in the source
code, we would not be able to call a function or procedure below the one
currently invoked.

126

11. Compiler Design 11.3 Contextual Analysis

The prober uses four HashMaps to keep track of the variable names and types
of the formal parameters, and the return types of the functions and procedures
identified. It also contains a flag which is used to keep track of the type of a
composite type, i.e. arrays, sets, etc. The function and procedure names are
used as keys in the HashMaps.

• FunctionProcedureProberFps This class is used by the FunctionProcedureProber
to extract the formal parameter sequence from a function or procedure. It
uses three ArrayList into which it stores information about parameter names,
types, and flags, e.g. name: A, type: string, flag: array.

• TypeDenoterExtractor This is a very little class with only one attribute
and a few methods. It is uses by the FunctionProcedureProberFps, to help
evaluate the formal parameter sequence.

• FormalParameterSequenceExtractor: As the name implies, this class is
used to extract the formal parameter sequence from a function or procedure.
The FunctionProcedureProber and the typechecker make calls during func-
tion and procedure declarations to extract the variable names in order to put
them in the identification table. We do this because we do not want the pro-
grammer to be able to overwrite them in the body of the function or procedure.

• RecordIdentitiesAndTypeExtractorChecker: This class is used to find
the types inside a record during declaration of it and checks that they are
assigned to the proper type, should they be assigned to an expression. In
collaboration with the RecordTypeChecker, it can find the right type of nested
records in any depth.

• RecordTypeChecker: The RecordTypeChecker is used by the Record-
IdentitiesAndTypeExtractorChecker which uses it to check if the types in
nested record declarations are of the right type. It does so by applying them
to the different subtrees when it detects a nested record.

• IdentificationTableRecord: Similar to the IdentificationTable, the
IdentificationTableRecord is used to keep track of records and its members.
It is implemented by using two HashMaps; one to save Record- TableElements,
which are the identifiers or members of a record, and one to save the HashMap
with the elements in, under the name of the record. Later, when we discover
use of records, we can load the records and extract information about the
individual members and use this information to do type checking of record
usages.

• RecordTableElement: Instances of this class is used to save information
about the individual identifier or element in a record. It holds a reference to
the node in which the record was declared and a boolean to bookkeep if it is a
constant or not.

• IdentificationTable: As suggested in [WB00, p.136] we have implemented
an identification table in the contextual analysis, since, as mentioned, the
SableCC generated framework supports no decorating of the CST. This is

127

11.4 Runtime Organization 11. Compiler Design

where the IdentificationTable comes in. It is used to decorate the tree, or
more simply put, keep track of declaration of variables, records, arrays, etc. It
is implemented using a HashMap where we save an array with a reference to the
node and a boolean to mark whether the declaration is constant or not. This
HashMap is then saved in a LinkedList that represents the two scope levels.
The lower level contains function, procedure, and record names. The upper
level contains the declarations made in the let-in block in the function or
procedure. These declarations are removed from the identification table when
the function or procedure is left. Once inside the body of a function or pro-
cedure the IdentificationTable is used to do type checking when variables
are used in expressions.

• IdentitiesAndTypesTable: This table is an extension of the IdentificationTable
and works in the same way with only a few differences. The biggest difference
is that it does not remove identifiers when leaving a function or procedure.
Also, it is implemented using two HashMaps. The second HashMap is used as
a LinkedList to save the different scopes, only now under the names of the
functions and procedures. The reason for this table is that it is used during
code generation to extract types of identifiers, without having to traverse the
tree more times than necessary.

• IdentitiesAndTypesTableElements: Objects of this class hold information
regarding types of identifiers. They also hold a boolean to indicate if the
identifier in question is a constant or not and, of course, the node itself and
the type of the node in the form of a string.

Having now introduced the first to phrases of the compiler, the remainder of this
document will be concerned with the final phrase, code generation.

11.4 Runtime Organization

In this section we present how types in DOGS are represented in JVM. Furthermore,
we will outline some of the problems with representing types in JVM.

11.4.1 Implementing the Types

When working with a virtual machine like JVM there is no direct access to memory
locations. Instead, it provides the primitives: boolean, int, float (both with alterna-
tives with more or less precision), char, array, and references to objects [MD96, p.
57]. Taking this into consideration, the most obvious way to implement types from
the DOGS language is to use the basic data types provided by JVM.

11.4.1.1 Implementing Infty

In the DOGS language we have the special value signed infty, which can be assigned
to both integers and floats. These values make it difficult to implement the DOGS
primitives to use JVM primitives directly, as it should be possible to compare values
between them. The need for comparison between integers and floats eliminates

128

11. Compiler Design 11.4 Runtime Organization

the possibility to let infty be implemented as the highest value (or lowest value for
negative infty) for the primitive data type in JVM. This is due to the fact that the
range of values for integers and floats is not the same, leading to infty being
represented in two different values for the two different primitives, which makes the
comparison of the values rather complicated.

11.4.1.2 Types through Objects

As the JVM only has support for local variables and no direct access to memory, the
task of representing the DOGS types becomes somewhat unusual compared to the
representation of e.g. types in C. As we deem it absurde to build a front-end to the
JVM, just to have a traditional data representation, we have chosen to make use of
the JVM’s real strength, objects. It may seem somewhat strange to have types of an
imperative language mapped to an object oriented platform, but it actually opens
some interesting apspects, such as inheritance and polymorphism.

By implementing every type as classes we can take advantage of the many pow-
erful features with object oriented design, as mentioned above with the primitive
numbers. It is easy to manipulate the data just by placing methods on these classes.
Also, it allows for easy description of common features of different types through
inheritance. The aforementioned methods will be the obvious way to make use of
when building our standard environment and take advantage of the way JVM is
working with objects. The implementation of the standard environment is briefly
described in Section 11.4.2.

When implemented with classes, we can take advantage of inheritance, and we
have the option to simulate multiple inheritance with interfaces. By doing this we
can let our primitives in runtime be specified as types of given interfaces for integers
and floats, and let infty implement both of these interfaces. This way the simulated
multiple inheritance lets infty be able to act as both integer and float in DOGS.

11.4.1.3 DOGS Types as Objects

For making our own hierarchy of types in the most intuitive way, we have chosen
to implement an abstract super-class called Type, in which we include all the types
that exist in a running DOGS program. This includes our primitive types, record
types, composite types, and the special types for holding properties for graphs, this
is illustrated in figure 11.4.

The first class inheriting from Type is the abstract class Primitive, which covers
the primitive types in the DOGS language. The primitives are implemented as
wrapper classes around the basic types in JVM.

Regarding the actual value representation. we have chosen to represent our
integer as a wrapper class for the 64-bit long and the float as a double, which
also is 64-bit. In runtime, infty keeps track of whether it is positive or negative by
using an internal boolean inside the class.

The abstract class Number, from which Infty and Reading inherits is the super-
class to the numbers. Arithmetic and boolean operations are implemented directly
on the objects, with the interfaces defined by the Number superclass. By doing this,

129

11.4 Runtime Organization 11. Compiler Design

....................

....................
....................
....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................
....................
....................

Reading

GraphTypeNumber

GraphPropertyCompositePrimitive

Type

Weight

Array

VertexEdge

Boolean String

FloatInteger

Infty

Record

DiGraphGraph

GraphCompositeSet

Label

Figure 11.4: Class diagram of the types in DOGS

we take advantage of polymorphism in the sence that we need only specify the super-
class when doing code generation as the JVM will call the appropriate operations.

There is however one complication, Java does not support multiple inheritance,
which we for representing infty, which should inherit from both integer and float.
We can, however in Java, simulate multiple inheritance through a number of inter-
faces as we mentioned in the last section.

Because we have chosen not to use single characters and only strings, the easi-
est, and most obvious way to implement them, is to use the standard String object,
which is always available in JVM. But since we have chosen to make our own hier-
archy of types, we have also made a String wrapper class.

Furthermore, we have the Boolean class, for the boolean type.
The class GraphProperty has two inheriting classes: Weight and Label. The

Composite class has quite a few more classes inheriting, because it also covers the
two types of graphs that we have implemented, Graph and DiGraph. These types of
graphs are inheriting from the abstract class GraphComposite. One of the reasons
for indexing the different types of graphs under an extra abstract class is to ease
making methods work in a general way, for all kinds of graphs. Also, it can be used
to declare some methods which should always be available on graphs, but not on the
other composite types. Besides the composite graph types, the two classes Set and
Array also inherit from the Composite class, which can both hold primitive types of
the DOGS language.

The Record class is abstract, and should only be used as superclass for the records
made when translating DOGS source code to JVM byte code.

The last group of types inheriting from Primitive are the special types for graph

130

11. Compiler Design 11.5 Code Generation

purposes; Edge and Vertex, organized under the abstract class GraphType. As for
vertex and edge, they are essentially just references to graphs.

11.4.2 Standard Environment

The functions and procedures in the DOGS Standard Environment are implemented
directly in Java in the class Standard. In Code Listing 11.3 one of the implemented
functions from Standard is shown. This function can be accessed as addEdge from
a DOGS program.

1 // func t i on boo lean addEdge (graphComposite G, edge e)
2 public stat ic Boolean addEdge (GraphComposite g , Edge e) {
3 return new Boolean (g . addEdge (e)) ;
4 }

Listing 11.3: The implementation of addEdge

All functions and procedures in the Standard Environment are listed in Section
A.2 on page 151.

11.5 Code Generation

Assured that the program is both syntactically and contextually correct, the code
generation phase can commence. The codegeneration package consists of several
abstract Encoder classes, which basically is one long chain of inheritance. The
CodeGenerator class is actually the only class that is ever instantiated and the
Encoder classes is a way to group related tree walking cases. All of the classes are
listed below.

- Encoder

- TypeEncoder

- ExpressionEncoder

- DeclarationEncoder

- StatementEncoder

- BranchingEncoder

- LoopingEncoder

- CodeGenerator

The result of this inheritance is basically just a tree-walker that outputs certain
Jasmin code when visiting certain nodes in the AST.

The Encoder classes, however, does not only contain code generating methods,
they also contain cases that change the flow of the tree walker. This is for instance
necessary when visiting the assignment a := a + 10. Here it is needed to push a
new Integer object and it’s initial value 10 onto the stack, load the variable a’s

131

11.5 Code Generation 11. Compiler Design

location, and finally invoke the addition interface on the object and then store the
object. Unless the walkers path is changed , it is not possible to push the right
things in the right order. The code generated from visiting an assignment to an
arithmetic addition expression in DOGS should look like Code Listing 11.4. In line
3 the object reference is loaded from local variable 1 and in line 4 to 7 a reference
to a new DOGS integer object with the value 10 is initialized. To do this operation,
first a new object is created with the new operator.

Now the stack consists of a reference to the a object at the bottom and a new
reference to a uninitialized Integer object on top. Then the top reference is du-
plicated (we need the second to initialize the object) and 10 is pushed as a long
on the stack.The stack now contains: a reference to a, two references to an unini-
tialized Integer object and a long with the value 10. The initialize method of
the Integer object is then invoked, popping the long and the second reference to
the uninitialized Integer object. This is done because parameters to methods are
passed by popping elements from the stack. At the end of line 7, V indicates that
the method returns void.

Now the stack consists of a reference to a at the bottom and a reference to the
integer object with the value 10. The latter is then casted to a NumberNumber
in line 9, and the actual addition method is invoked through the NumberNumber
interface in line 10. The method pops the two object references from the stack, thus
passing them as parameters to the addition method. Finally, in line 11, the result
is stored in local variable 1.

1 . . .
2 ; a := a + 10
3 aload 1
4 new dk/auc/cs/dogs/environment/types/Integer
5 dup
6 ldc2 w 10
7 invokespecial dk/auc/cs/dogs/environment/types/Integer/<

init>(J)V
8
9 checkcast dk/auc/cs/dogs/environment/types/NumberNumber

10 invokeinterface dk/auc/cs/dogs/environment/types/
NumberNumber/addition (Ldk/auc/cs/dogs/environment/types
/NumberNumber ;) Ldk/auc/cs/dogs/environment/types/
NumberNumber ; 2

11 astore 1
12 . . .

Listing 11.4: The assignment a := a + 10 in Jasmin code

The actual file output is done through the CodePrinter class, which basically is
a wrapper class for the Java PrintWriter with a little more functionality, such as
adding indentation and numbered labels in the generated Jasmin code.

The VariableMap is utilized in order to manage locations in the JVM correctly.
It has functions for querying the location of a variable and vice versa. As shown in
Figure 11.5, the class has a pointer, nextNewLocation, which always holds the value

132

11. Compiler Design 11.5 Code Generation

DepthFirstAdapter

.........
.........
.........
...

................................
...............
..............

.....................
VariableMap

variables: HashMap

locations: LinkedList

nextNewLocation: int

CodeWriter

out: PrintWriter
filename: String
indent: int

...........
...........
.........
.........
..

LocationAssigner

loopLevel: int

loopCurrentLevel: int

vmap: VariableMap
.........
.........
.........
...

CodeGenerator

.........
.........
.........
...

Encoders

Encoder

idRecord: IdentificationTableRecord

idTypeTable: IdentitiesAndTypesTable

prober: FunctionProcedureProber

cw: CodeWriter

vmap: VariableMap

std: StandardEnvironment

lib: Library

objectfile: String

sourcefile: String

Figure 11.5: The CodeGeneration class diagram

of the next available location. This is easily done because an object in JVM only
requires one local variable for references to objects.

The LocationAssigner is a small class that traverses subtrees constituting func-
tions and procedures, before the actual CodeGenerator enters the subtrees. When
encountering a variable it enters this variable name in the VariableMap, thereby
reserving a location for the variable.

133

Chapter 12

Testing dogsc

Testing of our compiler, dogsc, was done through a number of imperative tests
and unit tests. The unit tests can be found in dk.auc.cs.dogs.test.*, grouped
together by the TestDocsc test suite class. These are rather mechanical and hold no
real assurance that the compiler is correct. They do, however, provide a relatively
good assurance that major parts of the compiler are sound and work as designed.

Besides the unit tests, we have applied the dogsc compiler on a number of source
programs and monitored both the compiler and the runtime behaviour of the object
program. In these sections we will present the results of the test concerning Dijkstra’s
algorithm for finding the shortest path, which was introduced in Section 7.5, page
72.

12.1 Hello Dogs

The first, and very simple, test is the mandatory hello world program, which is
listed in Listing 12.1.

1 program helloworld ;
2
3 procedure main (array of string args)
4 l et
5 string str := ” Hello Dogs World ! ! ! ” ;
6 in
7 begin
8 print (str) ;
9 end

Listing 12.1: Hello Dogs source code

Although a simple example, it does cover a lot of basic functionality: Declaration,
assignment, and calls to the standard environment. The test was successful and
Hello Dogs World!!! was printed on the screen.

134

12. Testing dogsc 12.2 Testing Dijkstra’s Algorithm in DOGS

12.2 Testing Dijkstra’s Algorithm in DOGS

Now we move to a more complex test example, namely Dijkstra’s Algorithm. When
testing for some sort of correctness in the executable programs compiled by dogsc,
the easiest way is to know the answer to the input beforehand. For this test, we
have used a slightly modified version of Dijkstra’s Algorithm, compared to the one
presented in the analysis (cf. Section 2.2) in that the test version is also passed a
target vertex. This version finds the shortest path between the two given vertices
and prints out the shortest path and the length of the shortest path.

Our example consists of the vertices, edges, and weights shown below:

vertex weight vertex
a - 5 - b
a - 3 - c
b - 9 - e
c - 7 - d
c - 9 - e
d - 16 - f
e - 3 - f

The correct path, which the compiled program also has found, was through the
nodes: a,c,e,f with the length 15.

From these empirical tests, we can conclude that dogsc works in both cases. Of
course, we did a number of tests while building dogsc and found that the compiler,
at least on small programs, works. We can, however, not rule out the possibility
that there are bugs in the compiler, as discovering bugs in general in compilers is a
long and tedious task.

135

Status of implementation

When reviewing the implementation of the DOGS language, there are parts of the
language that we have not achieved to implement correctly, and some few parts that
we have not implemented. The parts which we have not implemented correctly are:

• Call-by-reference (currently graphs, labels, weights, sets and arrays will always
act as call-by-reference when passed as parameter)

• Declaration of records

• Declaration and use of multidimensional arrays

• Declaration of constants

The main reason for the lack of complete implementation of the DOGS language
in dogsc is that DOGS is not only made for working with graphs, but also provides
structures known from common programming languages, thus making the language
heavy and complex to implement. Furthermore, the implementation of an imperative
language, with the related primitives for such a language, for an object-oriented
platform such as JVM, has proved difficult to say the least, not only due to the lack
of documentation for SableCC and Jasmin, but also because our semantics cannot
be fully used. This is a problem we will discuss in the conclusion.

Although our implementation of DOGS has some flaws, we find that it has been
successful in that the parts of the specification that is missing in the implementation
is the ones least likely to be employed by our target audience. All the essential
constructs for working with graph algorithms are part of the implementation and, as
such, the language and the compiler should be useful to those they were intended for.
The table below lists the part of the DOGS specification that has been implemented
in dogsc.

• Looping constructions

• Branching

• Declaration of functions and procedures

• Declaration of variables

• Graph and diGraph

• Weights and labels

136

12. Testing dogsc 12.2 Testing Dijkstra’s Algorithm in DOGS

• Sets

• Import of packages

We have turned to Dijkstra’s Algorithm a number of times in the report, when
describing graph algorithms. With a few modifications, this algorithm is possible to
implement in DOGS, which is one of our main goals to be able to implement in the
language.

Since we have many commonly known constructs in the DOGS language, we
deem that it is also possible to create many programs which are not graph related.

137

Summary

In this chapter we have chosen the target platform for our implementation of DOGS.
Though, we have chosen to use an intermediate language, Jasmin, to help during the
development phase, this was only done to help debugging. We have also decided to
take advantage of SableCC, which helped us in creating and organizing the structure
of our compiler.

Our implementation of the DOGS language into the dogsc compiler, with all the
functionality that it encapsulates, ranging from constant folding over typechecking
to outputting of bytecode have been accounted for. All of this have been brought
together in a final series of tests, in which we have seen a running of Dijkstra’s
Algorithm in DOGS.

138

Part IV

Conclusion

139

Chapter 13

Conclusion

Having presented the technical part of our report, we will now reflect on the parts we
believe have been of the greatest influence in the development of the project. This
includes the design criteria, our syntax, semantics, and compiler design.

13.1 Evaluating the Design Criteria

The language design criteria from Section 5.1 are important to consider when re-
flecting on how well our goals have been achieved, as they can indicate if the project
has veered off course during design and implementation of the language. Here, we
will discuss some of the criteria deemed important or very important.

Our primary concern was that the language be readable (e.g. the programs
written in DOGS can be easily understood by novice programmers or programmers
unfamiliar with the language). This ease of understanding should keep the program-
mers focus on the actual algorithm by making it possible to produce code similar
to pseudo-code and with similar constructs. It is our belief that DOGS only falls
a little short of fullfilling this goal. Even though we have implemented a series of
constructs to facilitate this readability, the design of the language has forced us to
somewhat limit the expressibility of the language (one example is that linked lists
are not possible due to the lack of reference types). Even though the limitations are
not directly related to the readability of the algorithms that can be expressed, it
could still force the programmer to use rather arcane (and less intuitive) constructs
in some places. One example is implementing queues via arrays or sets, which is a
valid strategy, but a bit distant from the “usual” understanding (and even if this
construct was included in a standard library there would still have to be a queue
type for each type in the language). These shortcomings, however, do not change
the fact that DOGS does allow for most graph algorithms to be expressed in a way
that is similar to pseudo-code and, as such, should be easily comprehensible to our
target audience.

As for the writability of the language a lot of the same observations can be made
as with readability. The inclusion of many common constructs (e.g. for-to directly
in the syntax of the language) allows for somewhat rapid expression of the program-
mer’s thoughts. The high readability of the language also contributes positively in
this category, however the same reservations must be made. The slightly limited pos-

140

13. Conclusion 13.1 Evaluating the Design Criteria

sibilities allowed by the language might force the programmer to do certain things
in ways different than the one most appealing. On top of this there are some areas
that might be confusing to the programmer (such as the decision that all graph,
label, and weight parameters are treated as references, while other types have to be
explicitly marked for call-by-reference). These subtle details were a consequence of
our focus on readability. The decision was made to make the final code resemble
pseudo-code (it was estimated that most algorithms would need reference graph pa-
rameters and that ref graph would decrease the readability). In the end, however,
DOGS remains a quite writable language.

Another criteria we found to be important for a successful design and implemen-
tation of the language was the language being general, meaning that a few constructs
work in many different situations. The condition was that fewer constructs would
not lessen the readability of the code, and we have learned that this condition has
prevented us from fulfilling this goal for our language. We have included a lot of con-
structs to do things that could be accomplished with other language constructs. An
example is that switch-case can be coded as a series of if-then-else constructs.
Also, our constructs are less general that one could imagine. In some languages, for
and while are more or less equivalent, whereas in DOGS they serve totally different
purposes. Altogether these observations must lead to the conclusion that DOGS is
not a highly general language, but since the generality of the language should not
come at the expense of readability, it is not a disaster for the language.

The standardability of DOGS was rated important since it could not be assumed
that everyone in our target audience could use the same platform. This concern
merited a design which could be described in a standard way and as such be moved
across platforms. Our choice in this matter was to simply use JVM as the plat-
form for the language. This choice made our language available on a number of
different platforms, but did also have some adverse effects on the implementation
process (these will be described shortly). Nonetheless, the language (and as such the
programs written) is highly mobile and the criteria is fulfilled.

In considering the implementability of the language we noted that it was an
important criteria but that this goal would not be allowed to interfere with the
readability. This reservation has proved to be something that we were forced to
consider on a number of occasions during the design and implementation. Often a
construct in the language could be altered slightly (or left out entirely) to ease the
implementation, nevertheless these decisions could not be made without carefully
evaluating what effect such changes would have on the readability of the language.
The language can still be implemented (as shown) but the difficulty of the task could
possibly be reduced. As such, we did not produce a highly implementable language,
but we did not violate the readability clause either.

Ultimately, the primary concern was to produce a language that could be used
to produce readable programs. Although the language might not be as readable as
could be desired, the program written will still be quite close to pseudo-code, at
least for most algorithms and better than pseudo-code algorithms implemented in
common programming languages.

141

13.2 Operational Semantics and JVM 13. Conclusion

13.2 Operational Semantics and JVM

The work done on the formal specification of DOGS was not influenced by the
decision to use JVM as our target architecture. This had a number of peculiar
consequences.

In operational semantics it is common to use a somewhat abstract view of the
machine details (e.g. the organization of the environment-store-model). Since a sim-
plified model can greatly reduce the complexity of the finished semantics as well the
development process. This choice often has the effect that the developed semantics
is quite difficult to implement to a low-level (e.g. assembly) machine.

This classic dilemma is, ironically, the opposite of the situation we have experi-
enced, when trying to apply our operational semantics in the compiler development
process. Our semantics has a very elaborate model for stores (and environments) that
puts it very close (in abstraction) to the architecture of an actual computer. That,
however, does not map very well to the object-oriented nature of our target plat-
form, that does not support either sequential allocation in stores (accessible through
arithmetic expressions on locations) or pointers. These two restrictions (among oth-
ers) hamper the implementation of the language in that the implementor has to be
somewhat creative to translate the low-level details to higher level object-oriented
constructs.

Despite this weakness in the semantics (for this particular platform) it is still
a solid foundation upon which to construct the code generation, as it provides the
implementor with the workings of all constructs in the language. On top of that, the
language could potentially be implemented on a different (lower level) architecture
without much difficulty, as a complete formal specification of the semantics and type
system in DOGS has been made.

Even though this added difficulty has not been an insurmountable obstacle to
the implementation, a simpler model for the semantics might have simplified the
development of the semantics

To avoid this problem of mismatched abstraction levels it should have been real-
ized earlier that JVM does not support the lower abstraction levels, and the semantics
be developed accordingly.

13.3 Realization of DOGS

As we stated in the last chapter, the implementation of DOGS is not complete.
However, DOGS is a large and expressive language, and the part of the language
that has been implemented provides a wide range of functionality. It is possible to
work with the main features in the language: Graphs, sets, weights, and labels, thus
making it usable for the target audience.

The actual design of the compiler is somewhat complicated. Instead of one
single datastructure containing all relevant information about the AST, we have
several different tables containing the information. This could, and perhaps should,
have been combined into one datastructure encapsulating the information. Looking
back, it would have been a better design decision to have one pass gathering the
information and make it available to the following passes.

142

13. Conclusion 13.4 Future Course

The SableCC framework, which is the real backbone of the compiler, is a rather
powerful tool. It does, however, have a steep learning curve and the poor documen-
tation does not help. The fact that one cannot decorate the AST, which made it
necesary to store information outside the tree, is, after all, still a sound SableCC
design choice, as we deem that it has saved us a lot of time debugging.

In respects to the utilization of Jasmin as a front end to JVM bytecode, it has
surely helped us quite a lot. Mostly in regards to debugging, as the Jasmin code
is easier to comprehend than bytecode would have been. As with SableCC, Jasmin
came with a just as bad documentation, which made the process of learning the
syntax and opcodes harder.

13.4 Future Course

If we consider the future work with the project, we have a number of things to
consider. First of all, a small redesign of the language could be to include pointers
which could be beneficial. Another approach could be to implement the previously
considered concurrency (cf. Section 6.11, page 50), although this would have a major
impact on the semantics of DOGS , due to the choice of defining a big-step semantics.

Much more testing should be applied to make the compiler stable enough to
consider performing a bootstrap, i.e. rewriting the compiler in the language itself.
A redesign of the compiler would be in place to make the parts of the compiler more
independent.

143

Part V

Bibliography

145

Bibliography

[App99] Andrew W. Appel. Modern Compiler Implementation in Java. Cam-
bridge University Press, 1999.

[BA] Elliot Joel Berk and C. Scott Ananian. Jlex: A lexical analyzer gener-
ator for java(tm). http://www.cs.princeton.edu/~appel/modern/
java/JLex/. Seen on 08-04-2004.

[Car04] Luca Cardelli. CRC Handbook of Computer Science and Engineering,
chapter 97. CRC, 2004.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms. MIT Press, Massachusetts
Institute of Technology, 2001.

[Cor] Microsoft Corporation. Microsoft .net framework. http://msdn.
microsoft.com/netframework/. Seen on 15-4-2004.

[Gaga] Etienne M. Gagnon. Sablecc parser generator. http://www.sablecc.
org/. Seen on 08-04-2004.

[Gagb] Étienne Gagnon. Sablecc, an object-oriented compiler framework.
http://www.sablecc.org/thesis/thesis.php. Seen on 10-4-2004.

[Hud] Scott E. Hudson. Cup parser generator for java. http://www.cs.
princeton.edu/~appel/modern/java/CUP/. Seen on 08-04-2004.

[Hüt04] Hans. Hüttel. Pilen ved træets rod. Aalborg Universitet, 2004.

[Inc] CollabNet Inc. javacc: Javacc home. https://javacc.dev.java.
net/. Seen on 08-04-2004.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C programming
language. Prentice Hall, 1988.

[Lab] Francois Labelle. Programming language usage graph. http://www.
cs.berkeley.edu/~flab/languages.html. Seen on 25-02-2004.

[Lou99] Kyle Loudon. Mastering Algorithms in C. O’Reilly & Associates Inc.,
1999.

[Mar03] Alex Martelli. Python in a Nutshell. O’Reilly & Associates Inc., 2003.

146

http://www.cs.princeton.edu/~appel/modern/java/JLex/
http://www.cs.princeton.edu/~appel/modern/java/JLex/
http://msdn.microsoft.com/netframework/
http://msdn.microsoft.com/netframework/
http://www.sablecc.org/
http://www.sablecc.org/
http://www.sablecc.org/thesis/thesis.php
http://www.cs.princeton.edu/~appel/modern/java/CUP/
http://www.cs.princeton.edu/~appel/modern/java/CUP/
https://javacc.dev.java.net/
https://javacc.dev.java.net/
http://www.cs.berkeley.edu/~flab/languages.html
http://www.cs.berkeley.edu/~flab/languages.html

BIBLIOGRAPHY BIBLIOGRAPHY

[MD96] Jon Meyer and Troy Downing. Java Virtual Machine. O’Reilly &
Associates Inc., 1996.

[Mey] Jon Meyer. Java assembler interface. http://mrl.nyu.edu/~meyer/
jasmin/. Seen on 30-03-2004.

[MI] Sun Microsystems Inc. Java virtual machine. http://java.sun.com/
docs/books/vmspec/. Seen on 30-03-2004.

[Mit03] John C. Mitchell. Concepts in Programming Languages. Cambridge
University Press, 2003.

[MM] Erik Meijer and Jim Miller. Technical overview of the common lan-
guage runtime (or why the jvm is not my favorite execution envi-
ronment). http://docs.msdnaa.net/ark/Webfiles/WhitePapers/
CLR.pdf. Seen on 15-4-2004.

[MMMNS00] Lars Mathiassen, Andreas Munk-Madsen, Peter Axel Nielsen, and Jan
Stage. Object Oriented Analysis and Design. Marko Publishing APS,
Aalborg, Denmark, 2000.

[Nør] Kurt Nørmark. Programming paradigms. http://www.cs.auc.dk/
~normark/prog3-02/pdf/paradigms.pdf. Seen on 09-03-2004.

[Ros03] Kenneth H. Rosen. Discrete Mathematics and Its Applications.
McGraw-Hill, 2003.

[Seb04] Robert W. Sebesta. Concepts of Programming Languages Sixth ED.
Addison Wesley, 2004.

[Sof] Parsifal Software. Resolving the general dangling else/if-else ambi-
guity. http://www.parsifalsoft.com/ifelse.html. Seen on 24-5-
2004.

[Tho] Bent Thomsen. Programing languages and compilers - spring 2004.
http://www.cs.auc.dk/~bt/SPOF04. Seen on 30-03-2004.

[WB00] David A Watt and Deryck F Brown. Programming Language Proces-
sors in Java. Pearson Education Limited, 2000.

[Wik] Wikipedia. Imperative programming. http://en.wikipedia.org/
wiki/Programming_paradigm. Seen on 09-03-2004.

147

http://mrl.nyu.edu/~meyer/jasmin/
http://mrl.nyu.edu/~meyer/jasmin/
http://java.sun.com/docs/books/vmspec/
http://java.sun.com/docs/books/vmspec/
http://docs.msdnaa.net/ark/Webfiles/WhitePapers/CLR.pdf
http://docs.msdnaa.net/ark/Webfiles/WhitePapers/CLR.pdf
http://www.cs.auc.dk/~normark/prog3-02/pdf/paradigms.pdf
http://www.cs.auc.dk/~normark/prog3-02/pdf/paradigms.pdf
http://www.parsifalsoft.com/ifelse.html
http://www.cs.auc.dk/~bt/SPOF04
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Programming_paradigm

Part VI

Appendix

149

Appendix A

Standard Environment

A.1 Types

The types in DOGS include the most common types for working with graphs, and
can be indexed into primitives, composite types, graph types, and graph properties.
A further description of the types are listed here:

A.1.1 Primitives

Boolean: A boolean can hold the values true and false.

String: A string can hold an unlimited amount of characters.

Float: A float is a number with decimals, both positive and negative.

Integer: An integer is a number without decimals, both positive and negative.

Infty: An infty is a special constant which cannot be initialized as a variable, but
only be assigned to float and integer variables. Infty can be both positive and
negative.

Vertex: This primitive is an element in a graph, and can only be initialized by
adding a vertex to a graph.

Edge: This primitive is a connection between two vertices.

A.1.2 Composite types

Array: An array is an indexed multidimensional list of primitives, which can only
hold a limited of elements given when initialized.

Set: A set is an unsorted list of primitives, which can hold an unlimited amount
of elements.

150

A. Standard Environment A.2 Functions and Procedures

A.1.3 Graph types

Graph: A graph is a simple graph, which means that an edge (u, v) = (v, u).

DiGraph: A diGraph is a directed graph, which means that an edge (u, v) 6=
(v, u).

A.1.4 Graph properties

Weight: A weight is always connected to a specific graph, and can hold primitive
values for every edge in the graph.

Label: A label is a always connected to a specific graph, and can hold primitive
values for every vertex in the graph.

A.2 Functions and Procedures

A.2.1 Input / Output

procedure print(string s)a: Prints the given string to the screen.

function string readStringInput(): Reads input from keyboard, until return
is pressed, and returns this as a string.

function string readIntegerInput(): Reads input from keyboard, until return
is pressed, and returns this as an integer.

function float readFloatInput(): Reads input from keyboard, until return is
pressed, and returns this as a float.

function string readFile(string filename): Reads contents from the given file,
and returns this as a string. If the file cannot be read the program will terminate
with an error message.

function boolean writeFile(string filename, string content): Writes the
given contents to the given file and returns a boolean, telling whether the writing
went well. If the file does not exist it is created.

function boolean appendToFile(string filename, string content): Appends
the given content to the given file and returns a boolean telling whether the writing
went well. If the file does not exist it is created.

procedure exit(string message): Terminates the running program and prints
the given message.

151

A.2 Functions and Procedures A. Standard Environment

A.2.2 Conversion

function string integerToString(integer i): Converts the given integer to a
string and returns this string.

function string floatToString(float f): Converts the given float to a string and
returns this string.

function integer round(float f): Converts the given float to a integer and re-
turns this integer. Any decimals are truncated.

function string booleanToString(boolean b): Converts the given boolean to
a string and returns this string.

function integer stringToInteger(string s): Converts the given string to an
integer and returns this integer. If the string cannot be converted to an integer the
program will terminate.

function integer stringToFloat(string s): Converts the given string to a float
and returns this integer. If the string cannot be converted to a float the program
will terminate.

function boolean stringToBoolean(string s): Converts the given string to a
boolean and returns this boolean. If the string cannot be converted to a boolean the
program will terminate.

function array of string explodeString(string s, string pattern): Explodes
the given string to an array by the given pattern. The strings in the pattern will be
removed while exploding, thus not occur in the array. If the pattern is not found in
the given string the array will contain only one element: with the given string.

A.2.3 Sets

Functions and procedures taking a primitive as argument can use all primitives in
DOGS as argument.

procedure addToSet(set S, primitive p): Functions and procedures taking a
graphComposite as argument, can use

Adds the given primitive to the given set. If the primitive equals another element
in the set it will not be added to the set.

procedure removeFromSet(set S, primitive p): Removes the given primitive
from the given set. No error occurs if the primitive is not in the set.

function boolean isInSet(set S, primitive p): Returns a boolean telling whether
the given primitive is found in set or not.

152

A. Standard Environment A.2 Functions and Procedures

function integer sizeOfSet(set S): Returns an integer with the size of the given
set.

A.2.4 Arrays

function integer arrayDimensions(array a): Returns the amount of dimen-
sons in the given array.

function integer arrayDimSize(array a, integer dim): Returns the size for
the given dimension in the given array.

A.2.5 Graphs

Functions and procedures taking a graphComposite as argument can use both graph
and diGraph.

procedure addVertex(graphComposite G, string name): Adds a vertex to
the given graph with the given name and returns this vertex. If a vertex with the
given name is already in the graph the program will terminate.

procedure removeVertex(graphComposite G, vertex v): Removes the given
vertex from the graph. If the vertex is not in the graph the program will terminate.

function set of vertex vertices(graphComposite G): Returns a set containing
all vertices in the given graph.

function set of edge edges(graphComposite G): Returns a set containing all
edges in the given graph.

function boolean isEdge(vertex v1, vertex v2): Returns a boolean telling
whether there is an edge between the two given vertices. If the two vertices are in
different graphs the boolean will be set to false.

function vertex getVertex(graphComposite G, string name): Returns the
vertex with the given name from the given graph. If no vertex with the given name
is found the program will terminate.

function boolean addEdge(graphComposite G, edge e): Adds the given
edge to the given graph. Returns a boolean, telling whether it was added. This
function will return false if the edge is already in the graph.

function boolean nameOfVertex(vertex v): Returns the name of the vertex,
as given when added to the graph.

153

Appendix B

DOGS Syntax in BNF

Commands

<command> ::= let Declaration in begin Multi-Command end
| begin Multi-Command end

<Multi-Command> ::= ε
| Single-Command Multi-Command

<Single-Command> ::= Open-Command
| Closed-Command

<Open-Command> ::= if Expression then Single-Command
| if Expression then Closed-Command else Open-Command
| Loop-Headers Open-Command
| do Open-Command while Expression

<Closed-Command> ::= Basic-Commands
| if Expression Closed-Command else Closed-Command
| Loop-Headers Closed-Command
| do Closed-Command while Expression

<Loop-Headers> ::= while Expression do
| for V-Name := Expression (to |

downto) Expression do
| foreach Single-Declaration in V-Name do
| foreach Single-Declaration in V-Name where Expression do

<Basic-Commands> ::= V-Name := Expression;
| Parameter-Call ;
| Parameter-Call := Expression ;
| begin Multi-Command end
| switch V-Name Case-Item Default-Item endswitch
| break;
| return Expression;
| V-Name ++;
| V-Name --;

<Parameter-Call> ::= Identifier (Actual-Parameter-Sequence)

154

B. DOGS Syntax in BNF

Case items

<Case-Item> ::= ε
| case Integer-Literal : Single-Command Case-Item
| case Integer-Literal .. Integer-Literal : Single-Command Case-Item

<Default-Item> ::= ε
| default: single-command

Expressions

<Expression> ::= Assign-Expr
<Primary-Expression> ::= Integer-Literal

| String-Literal
| Boolean-Literal
| Float-Literal
| Infty
| V-Name
| Parameter-Call
| (Identifier, Identifier)
| (Expression)
| {Expression Comma-Expression}

<Comma-Expression> ::= ε
| ,Expression Comma-Expression

155

B. DOGS Syntax in BNF

Precedence

<Assign-Expr> ::= Or-Expr
| Or-Expr := Assign-Expr

<Or-Expr> ::= And-Expr
| Or-Expr or And-Expr
| Or-Expr xor And-Expr

<And-Expr> ::= Not-Expr
| And-Expr and Not-Expr

<Not-Expr> ::= Compare-Expr
| not Not-Expr

<Compare-Expr> ::= Less-Greater-Expr
| Compare-Expr = Less-Greater-Expr
| Compare-Expr <> Less-Greater-Expr

<Less-Greater-Expr> ::= Plus-Minus-Expr
| Less-Greater-Expr < Plus-Minus-Expr
| Less-Greater-Expr > Plus-Minus-Expr
| Less-Greater-Expr <= Plus-Minus-Expr
| Less-Greater-Expr >= Plus-Minus-Expr

<Plus-Minus-Expr> ::= Multiplication-Expr
| Plus-Minus-Expr + Multiplication-Expr
| Plus-Minus-Expr - Multiplication-Expr
| + Multiplication-Expr
| - Multiplication-Expr

<Multiplication-Expr> ::= Concatenation-Expr
| Multiplication-Expr * Concatenation-Expr
| Multiplication-Expr / Concatenation-Expr
| Multiplication-Expr div Concatenation-Expr
| Multiplication-Expr % Concatenation-Expr

<Concatenation-Expr> ::= Primary-Expression
| Primary-Expression & Concatenation-Expr;

Value-or-variable-names

<V-Name> ::= Identifier
| Identifier.V-Name
| Identifier[Expression]

156

B. DOGS Syntax in BNF

Declarations

<declaration> ::= ε
| Single-Declaration-Const-Type Declaration
| Single-Declaration; Declaration

<Single-Declaration> ::= SAV-Help-Declarations (ε | Declaration-Assignment)
| weight in V-Name of Identifier Identifier
| label in V-Name of Identifier Identifier

<Single-Declaration-Const-Type> ::= record Identifier (Const-Declaration — SAV-
Help-Declarations) Declaration-Assignment
Type-Declaration-Helper;

| Const-Declaration Declaration-Assignment;
<Type-Declaration-Helper> ::= ε

| , (Const-Declaration — SAV-Help-Declarations)
Declaration-Assignment Type-Declaration-Helper

<Multi-Declaration-Const-Type> ::= ε
| Single-Declaration-Const-Type Multi-Declaration-

Const-Type
<Single-Secondary-Declaration> ::= ε

| procedure Identifier (Formal-Parameter-Sequence)
Command Single-Secondary-Declaration

| function Type-Denoter Identifier (Formal-Parameter-
Sequence) Command Single-Secondary-Declaration

<Declaration-Assignment> ::= ε
| ::= Assign-Expr

<Const-Declaration> ::= constant SAV-Help-Declarations
<Variable-Declaration ::= Identifier Identifier
<Set-Declaration> ::= set of Identifier Identifier
<Array-Declaration> ::= array of Identifier Array-Size-Denoter Identifier
<Array-Size-Denoter> ::= ε

| [Integer-Literal]
| [Integer-Literal] Array-Size-Denoter

<Sav-Help-Declarations> ::= Set-Declaration
| Array-Declaration
| Variable-Declaration

Parameters

<Formal-Parameter-Sequence> ::= ε
| Type-Denoter (ref | ε) Identifier

Comma-Formal-Parameter
<Comma-Formal-Parameter> ::= ε

| ,Type-Denoter (ref | ε) Identifier
<Actual-Parameter-Sequence> ::= ε

| Expression Comma-Expression

157

B. DOGS Syntax in BNF

Type-denoter

<Type-Denoter> ::= Identifier
| array of Identifier
| weight of Identifier
| label of Identifier
| set of Identifier

Program

<Program> ::= program Identifier ; Package-Import Multi-Declaration-Const-Type
Single-Secondary-Declaration

| package Identifier ; Package-Import Multi-Declaration-Const-Type
Single-Secondary-Declaration

<Package-Import> ::= ε
| import V-Name; Package-Import

158

B. DOGS Syntax in BNF

Lexicon

<Token> ::= Integer-Literal | String-Literal | Float-Literal | Boolean-Literal |
Identifier | Operator | array | begin | constant |
do | else | end | function |
procedure | if | in | let | of |
record | then | while | for | foreach |
default | break | to | downto | where |
switch | endswitch | return | case | ref |
weight | label | edge | vertex | infty |
program | package | ++ | -- | break |
infty | default | import | . | : |
; | , | := | (|) | [|
] | { | }

<Integer-Literal> ::= Digit Digit*
<Float-Literal> ::= Digit Digit* . Digit Digit*
<Boolean-Literal> ::= true | false
<String-Literal> ::= ‘‘ Escape-Literal* Letter* Escape-Literal* ’’
<Escape-Literal> ::= \n

| \t
| \\

<Identifier> ::= Letter (Letter | Digit)*
<Comment> ::= // Graphic* end-of-line

| /* Graphic* */
<Blank> ::= space | tab | end-of-line
<Graphic> ::= Letter | Digit | Operator | space | tab | . |

: | ; | , | ~ | (|
) | [|] | { |
} | | | | ! | ’ |
‘ | ‘‘ | # | $

<Letter> ::= a | b | c | d | e | f | g | h
| i | j | k | l | m | n | o | p | q | r
| s | t | u | v | w | x | y | z | A | B
| C | D | E | F | G | H | I | J | K | L
| M | N | O | P | Q | R | S | T | U | V
| W | X | Y | Z

<Digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<Operator> ::= + | & | -- | & | * | / |

= | <= | >= | < | > | % |
div | <> | and | or | not | xor

159

Appendix C

SableCC grammar for DOGS

1
2 /∗ This is the grammar f i l e for the DOGS compiler ∗/
3
4 Package dk . auc . cs . dogs . compiler ;
5
6 Helpers
7 letter = [[[’ a ’ . . ’ z ’] + [’ A ’ . . ’ Z ’]] + ’ _ ’] ;
8 digit = [’ 0 ’ . . ’ 9 ’] ;
9 digit_sequence = digit+;

10 escape_sequence = ’ \ ’ ’ ’ ’ | ’ \ t ’ | ’ \ n ’ | ’ \ \ ’ | ’ \ ” ’ ;
11 all = [0 . . 1 2 7] ;
12 not_star = [all − ’∗ ’] ;
13 not_star_slash = [not_star − ’ / ’] ;
14 s_char = [all − [’ ” ’ + [’ \ ’ + [1 0 + 1 3]]]] |

escape_sequence ;
15 s_char_sequence = s_char+;
16 cr = 13;
17 lf = 10;
18 tab = 9;
19 end_of_line = lf | cr | cr lf ;
20 single_line_comment_input = [all − [cr + lf]] ;
21
22 Tokens
23 /∗ operators ∗/
24 semicolon = ’ ; ’ ;
25 colon = ’ : ’ ;
26 range = ’ . . ’ ;
27 dot = ’ . ’ ;
28 comma = ’ , ’ ;
29 assign = ’ := ’ ;
30 l_par = ’ (’ ;
31 r_par = ’) ’ ;
32 l_bracket = ’ [’ ;

160

C. SableCC grammar for DOGS

33 r_bracket = ’] ’ ;
34 l_brace = ’{ ’ ;
35 r_brace = ’} ’ ;
36
37 /∗ Arithmetic tokens ∗/
38 star = ’∗ ’ ;
39 plus = ’+ ’ ;
40 plus_plus = ’++ ’;
41 minus = ’− ’ ;
42 minus_minus = ’−− ’;
43 div = ’/ ’ ;
44 mod = ’mod’ ;
45 int_div = ’div ’ ;
46 concat = ’& ’ ;
47
48 /∗ Logical tokens ∗/
49 equal = ’= ’ ;
50 lteq = ’<= ’;
51 gteq = ’>= ’;
52 lt = ’ < ’ ;
53 gt = ’ > ’ ;
54 neq = ’<> ’;
55 and = ’and ’ ;
56 or = ’or ’ ;
57 not = ’not ’ ;
58 xor = ’ xor ’ ;
59 infty = ’ infty ’ ;
60
61 /∗ Control tokens ∗/
62 begin = ’begin ’ ;
63 end = ’end ’ ;
64 l et = ’ let ’ ;
65 in = ’ in ’ ;
66 i f = ’ i f ’ ;
67 then = ’ then ’ ;
68 else = ’ else ’ ;
69 while = ’while ’ ;
70 do = ’do ’ ;
71 for = ’ for ’ ;
72 to = ’ to ’ ;
73 of = ’ of ’ ;
74 downto = ’downto ’ ;
75 foreach = ’ foreach ’ ;
76 where = ’where ’ ;
77 switch = ’ switch ’ ;
78 endswitch = ’endswitch ’ ;
79 case = ’ case ’ ;

161

C. SableCC grammar for DOGS

80 default = ’ default ’ ;
81 return = ’ return ’ ;
82 break = ’ break ’ ;
83
84 /∗ Type tokens ∗/
85 ref = ’ ref ’ ;
86 const = ’ constant ’ ;
87 array = ’array ’ ;
88 record = ’ record ’ ;
89 label = ’ label ’ ;
90 weight = ’weight ’ ;
91 set = ’ set ’ ;
92
93 /∗ Primitive type tokens ∗/
94 integer_literal = digit+;
95 string_literal = ’” ’ s_char_sequence ? ’ ” ’ ;
96 boolean_literal = ’ true ’ | ’ false ’ ;
97 float_literal = digit+ ’ . ’ digit+;
98
99 /∗ Other ∗/

100 procedure = ’procedure ’ ;
101 function = ’ function ’ ;
102 program = ’program ’ ;
103 package = ’ package ’ ;
104 import = ’ import ’ ;
105 identifier = letter (digit | letter) ∗ ;
106
107 /∗ To be ignored ∗/
108 blank = (cr | lf | tab | ’ ’) +;
109 comment = ’/∗ ’ not_star ∗ ’∗ ’+ (not_star_slash not_star

∗ ’∗ ’+) ∗ ’ / ’ ;
110 comment_line = ’// ’ single_line_comment_input ∗ end_of_line

? ;
111
112 Ignored Tokens
113
114 blank ,
115 comment ,
116 comment_line ;
117
118 Productions
119 /∗∗∗∗∗∗∗∗∗∗∗
120 ∗ Program ∗
121 ∗∗∗∗∗∗∗∗∗∗∗/
122 program =
123 T .program identifier semicolon package_import ∗

single_declaration_const_type ∗

162

C. SableCC grammar for DOGS

single_secondary_declaration ∗ |
124 {package } T . package identifier semicolon package_import ∗

single_declaration_const_type ∗
single_secondary_declaration ∗ ;

125
126 package_import =
127 import [package_name] : v_name semicolon ;
128
129 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
130 ∗ Declarations ∗
131 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
132 declaration =
133 declarations ∗ ;
134
135 declarations =
136 single_declaration_const_type |
137 {single } single_declaration semicolon ;
138
139 single_declaration =
140 {set_array_var } sav_help_declarations

declaration_assignment ? |
141 {weight_label } weight_label_declaration ;
142
143 single_declaration_const_type =
144 {record } record_declaration semicolon |
145 {const } const_declaration declaration_assignment

semicolon ;
146
147 single_secondary_declaration =
148 {procedure } procedure identifier l_par

formal_parameter_sequence ? r_par command |
149 { function } function type_denoter identifier l_par

formal_parameter_sequence ? r_par command ;
150
151 declaration_assignment =
152 assign expression ;
153
154 /∗∗∗∗∗∗∗∗∗
155 ∗ Types ∗
156 ∗∗∗∗∗∗∗∗∗/
157 record_declaration =
158 record [type] : identifier csav_help_declarations

declaration_assignment ? type_declaration_helper ∗ ;
159
160 const_declaration =
161 const sav_help_declarations ;
162

163

C. SableCC grammar for DOGS

163 variable_declaration =
164 [type] : identifier [name] : identifier ;
165
166 array_declaration =
167 array of [type] : identifier array_size_denoter ? [name] :

identifier ;
168
169 set_declaration =
170 set of [type] : identifier [name] : identifier ;
171
172 weight_label_declaration =
173 {weight } weight in [graph] : v_name of [type] : identifier [

name] : identifier |
174 { label } label in [graph] : v_name of [type] : identifier [name

] : identifier ;
175
176 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
177 ∗ Type helpers ∗
178 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
179 csav_help_declarations =
180 {const } const_declaration |
181 {set_array_var } sav_help_declarations ;
182
183 sav_help_declarations =
184 { set } set_declaration |
185 {array } array_declaration |
186 {variable } variable_declaration ;
187
188 type_declaration_helper =
189 comma csav_help_declarations declaration_assignment ? ;
190
191 array_size_denoter =
192 {single } l_bracket integer_literal r_bracket |
193 {multi } l_bracket integer_literal r_bracket

array_size_denoter ;
194
195 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
196 ∗ Type Denoter ∗
197 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
198 type_denoter =
199 {identifier } T . identifier |
200 {array } array of [type] : identifier |
201 {weight } weight of [type] : identifier |
202 { label } label of [type] : identifier |
203 { set } set of [type] : identifier ;
204
205 /∗∗∗∗∗∗∗∗∗∗∗

164

C. SableCC grammar for DOGS

206 ∗ Command ∗
207 ∗∗∗∗∗∗∗∗∗∗∗/
208 command =
209 {let_in_begin_end } l et declaration in begin single_command

∗ end |
210 {begin_end } begin single_command ∗ end ;
211
212 single_command =
213 {open } open_command |
214 {closed } closed_command ;
215
216 open_command =
217 {if_then } i f expression then single_command |
218 {if_else } i f expression then closed_command else

open_command |
219 {loop } loop_headers open_command |
220 {while_do } while expression do open_command |
221 {do_while } do open_command while expression semicolon ;
222
223 closed_command =
224 {basic_command } basic_commands |
225 {if_open_else } i f expression then [true] : closed_command

else [fa l se] : closed_command |
226 {loop } loop_headers closed_command |
227 {while_do } while expression do closed_command |
228 {do_while } do closed_command while expression

semicolon ;
229
230 loop_headers =
231 {for_to } for v_name assign [from_expr] :

expression to [to_expr] : expression do |
232 {for_downto } for v_name assign [from_expr] :

expression downto [downto_expr] : expression do |
233 {foreach_in_do } foreach single_declaration in v_name

do |
234 {foreach_in_where_do } foreach single_declaration in v_name

where expression do ;
235
236 basic_commands =
237 {assign } v_name assign expression semicolon |
238 {call } parameter_call semicolon |
239 {lw_ass } parameter_call assign expression semicolon |
240 {switch } switch v_name case_item ∗ default_item ?

endswitch |
241 {begin_end } begin single_command ∗ end |
242 {break } break semicolon |
243 {return } return expression semicolon |

165

C. SableCC grammar for DOGS

244 {postfix_pp } v_name plus_plus semicolon |
245 {postfix_mm } v_name minus_minus semicolon ;
246
247 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
248 ∗ Case Definition ∗
249 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
250 case_item =
251 {single } case integer_literal colon single_command |
252 {range } case [from] : integer_literal range [to] :

integer_literal colon single_command ;
253
254 default_item =
255 {case } default colon single_command ;
256
257 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
258 ∗ Expressions ∗
259 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
260 expression =
261 assign_expr ; / ∗ Start of the precedence ring ∗/
262
263 primary_expression =
264 { integer } integer_literal |
265 { string } string_literal |
266 {boolean } boolean_literal |
267 { f loat } float_literal |
268 { infty } infty |
269 {v_name } v_name |
270 {call } parameter_call |
271 {edge} l_par [first] : identifier comma [last] : identifier

r_par |
272 {par } l_par expression r_par |
273 {brace } l_brace expression primary_expr_comma_expr ∗

r_brace ;
274
275 primary_expr_comma_expr =
276 comma expression ;
277
278 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
279 ∗ Precedence rules ∗
280 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
281 assign_expr =
282 {or } or_expr |
283 {assign } or_expr T . assign assign_expr ;
284
285 or_expr =
286 {and} and_expr |
287 {or } or_expr T . or and_expr |

166

C. SableCC grammar for DOGS

288 {xor } or_expr T . xor and_expr ;
289
290 and_expr =
291 {not } not_expr |
292 {and} and_expr T .and not_expr ;
293
294 not_expr =
295 {compare } compare_expr |
296 {not } T . not not_expr ;
297
298 compare_expr =
299 {lt_gt } less_greater_expr |
300 {equal } compare_expr T . equal less_greater_expr |
301 {not_equal } compare_expr T . neq less_greater_expr ;
302
303 less_greater_expr =
304 {plus_minus } plus_minus_expr |
305 {lt } less_greater_expr T . lt plus_minus_expr |
306 {gt } less_greater_expr T . gt plus_minus_expr |
307 {lteq } less_greater_expr T . lteq plus_minus_expr |
308 {gteq } less_greater_expr T . gteq plus_minus_expr ;
309
310 plus_minus_expr =
311 {multi } multiplication_expr |
312 {plus } plus_minus_expr T . plus multiplication_expr |
313 {minus } plus_minus_expr T . minus multiplication_expr |
314 {unary_plus } T . plus multiplication_expr |
315 {unary_minus } T . minus multiplication_expr ;
316
317 multiplication_expr =
318 {concatination_expr } concatination_expr |
319 {star } multiplication_expr T . star

concatination_expr |
320 {div } multiplication_expr T . div

concatination_expr |
321 {int_div } multiplication_expr T . int_div

concatination_expr |
322 {mod} multiplication_expr T .mod

concatination_expr ;
323
324 concatination_expr =
325 {unary_pp_mm } primary_expression |
326 primary_expression concat

concatination_expr ;
327
328 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
329 ∗ v−name identifiers ∗

167

C. SableCC grammar for DOGS

330 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
331 v_name =
332 identifier v_name_extension ? ;
333
334 v_name_extension =
335 {identifier_record } dot v_name |
336 {identifier_array } l_bracket expression r_bracket ;
337
338 parameter_call =
339 [name] : identifier l_par actual_parameter_sequence ? r_par ;
340
341 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
342 ∗ Formal Parameter ∗
343 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
344 formal_parameter_sequence =
345 type_denoter ref ? identifier formal_type_denoter ∗ ;
346
347 formal_type_denoter =
348 comma type_denoter ref ? identifier ;
349
350 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
351 ∗ Actual Parameter ∗
352 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
353 actual_parameter_sequence =
354 expression actual_expression ∗ ;
355
356 actual_expression =
357 comma expression ;

Listing C.1: Gramma for the DOGS language

168

Appendix D

DOGS Formal Type System

Formal presentation of the type system in DOGS excluding the record type.

D.1 Type Rules

boolean boolean type ∈ basic, ∈ primitiveTypes
string string type ∈ basic, ∈ primitiveTypes
float float type ∈ basic, ∈ primitiveTypes
integer integer type ∈ basic, ∈ primitiveTypes
infty infty type
vertex vertex type ∈ primitiveTypes
edge edge type ∈ primitiveTypes
array of primitive array type
set of primitive set type
weight of primitive weight type
label of primitive label type
typeN1 → typeN2 function type
proc typeN procedure type
prog program type
pack package type
typeN constant constant type

Table D.1: Types in the DOGS type system

D.2 Declaration Rules

169

D.3 Command Rules D. DOGS Formal Type System

Γ ` � Γ is a well-formed environment
Γ ` typeN typeN is a well-formed type in Γ
Γ ` S S is a well-formed command in Γ
Γ ` exp : typeN exp is a well-formed expression of type typeN in Γ
Γ ` D ∴ A D is a well-formed expression of signature A in Γ
Γ ` typeN1 <: typeN2 typeN1 is a subtype of typeN2 in Γ

Table D.2: Judgements for the DOGS type system

D.3 Command Rules

170

D. DOGS Formal Type System D.4 Expression Rules

[type-boolean]
Γ ` �

Γ ` boolean

[type-string]
Γ ` �

Γ ` string

[type-integer]
Γ ` �

Γ ` integer

[type-float]
Γ ` �

Γ ` float

[type-vertex]
Γ ` �

Γ ` vertex

[type-edge]
Γ ` �

Γ ` edge

[type-graph]
Γ ` �

Γ ` graph

[type-diGraph]
Γ ` �

Γ ` diGraph

[type-boolean1]
Γ ` �

Γ ` boolean

[type-infty]
Γ ` �

Γ ` infty

[type-array]
Γ ` primitiveType

Γ ` array of primitiveType

[type-set]
Γ ` primitiveType

Γ ` set of primitiveType

[type-weight]
Γ ` primitiveType

Γ ` weight of primitiveType

[label]
Γ ` primitiveType

Γ ` label of primitiveType

[type-func]
Γ ` D ∴ A Γ ` typeN

Γ ` A→ typeN

[type-proc]
Γ ` D ∴ A

Γ ` proc A

[type-prog]
Γ ` �

Γ ` prog

[type-pack]
Γ ` �

Γ ` pack

[type-const]
Γ ` typeN

Γ ` typeN constant

Table D.3: Basic type rules

D.4 Expression Rules

171

D.4 Expression Rules D. DOGS Formal Type System

[sub-type-int-float]
Γ ` integer Γ ` float

Γ ` integer <: float

[sub-type-reflex]
Γ ` typeN

Γ ` typeN <: typeN

[sub-type-subsumption]
Γ ` x : typeN2 Γ ` typeN1 <: typeN2

Γ ` x : typeN2

Table D.4: Subtype rules

[env-empty]

∅ ` �

[env-extension]
Γ ` typeN x /∈ dom(Γ)

Γ, x : typeN ` �

[env-var-exists]
Γ, x : typeN ` �

Γ, x : typeN ` x : typeN

Table D.5: Environment rules

172

D. DOGS Formal Type System D.4 Expression Rules

[dec-prog]
∅ ` Imp ∴ A1 A1 ` DR ∴ A2 A1, A2 ` DC ∴ A3 A1, A2, A3 ` DB ∴ A4

∅ ` (program x Imp DR DC DB) ∴ (x : prog)

[dec-pack]
Γ ` Imp ∴ A1 Γ, A1 ` DR ∴ A2 Γ, A1, A2 ` DC ∴ A3 Γ, A1, A2, A3 ` DB ∴ A4

Γ ` (package x Imp DR DC DB) ∴ (x : pack,A1, A2, A3, A3)

[dec-imp-block]
Γ ` Imp1 ∴ A1 Γ, A1 ` Imp2 ∴ A2

Γ ` (Imp1Imp2) ∴ (A1, A2

[dec-imp]
Γ ` x : string

Γ ` (Impx) ∴ A

Table D.6: Program and package declarations, Pro

[dec-constant-block]
Γ ` DC1 ∴ (x1 : typeN1) Γ ` DC2 ∴ (x2 : typeN2)

Γ ` (DC1DC2) ∴ (x1 : typeN1 , x2 : typeN2)

[dec-constant]
Γ ` typeN Γ ` exp : typeN

Γ ` (constant typeN x:=exp) ∴ (x : typeN constant)

Table D.7: Constant declarations, DC

[dec-func]
Γ, A ` Letin : typeN Γ ` typeN Γ ` parF ∴ A

Γ ` (function typeN x (parF) LetIn) ∴ (x : A→ typeN

[dec-proc]
Γ ` parF ∴ A Γ, A ` LetIn

Γ ` (procedure (parF) LetIn) ∴ (x : proc A)

Table D.8: Function and procedure declarations, DB

173

D.4 Expression Rules D. DOGS Formal Type System

[dec-var]
Γ ` typeN typeN ∈ primitiveType

Γ ` (typeN x) ∴ (x : typeN)

[dec-var-init]
Γ ` typeN Γ ` exp : typeN

Γ ` (typeN x := exp) ∴ (x : typeN)

[dec-array]
Γ ` typeN Γ ` ArrayDim typeN ∈ primitiveType

Γ ` (arrayof typeN x ArrayDim) ∴ (x : array of typeN)

[dec-array-init]
Γ ` typeN Γ ` ArrayDim Γ ` exp : typeN

Γ ` (array of typeN x ArrayDim := exp) ∴ (x : array of typeN)

[dec-set]
Γ ` typeN typeN ∈ primitiveType

Γ ` (set of typeN x) ∴ (x : set of typeN)

[decl-weight]
Γ ` typeN Γ ` x : {graph, diGraph} typeN ∈ basic

Γ ` (weight in x of typeN x) ∴ (x : weight of typeN)

[decl-label]
Γ ` typeN Γ ` x : {graph, diGraph} typeN ∈ basic

Γ ` (label in x of typeN x) ∴ (x : label of typeN)

Table D.9: Variable declarations, DV

174

D. DOGS Formal Type System D.4 Expression Rules

[single-ParF]
Γ ` typeN x /∈ dom(Γ)

Γ ` typeN x : typeN

[multi-ParF]
Γ ` ParF : A Γ ` typeN x /∈ dom(Γ)

Γ ` ParF typeN x : A, typeN

[single-ref-ParF]
Γ ` typeN x :/∈ dom(Γ)

Γ ` typeN ref x : typeN

[multi-ref-ParF]
Γ ` ParF : A Γ ` typeN x /∈ dom(Γ)

Γ ` ParF typeN ref x : A, typeN

Table D.10: Formal parameter sequence rules

175

D.4 Expression Rules D. DOGS Formal Type System

[ass-var]
Γ ` x : typeN Γ ` exp : typeN

Γ ` x := exp

[ass-label]
Γ ` label of typeN Γ ` exp2 : typeN Γ ` exp1 : vertex typeN ∈ primitiveType

Γ ` x(exp1):=exp2

[ass-weight]
Γ ` weight of typeN Γ ` exp2 : typeN Γ ` exp1 : edge typeN ∈ primitiveType

Γ ` x(exp1):=exp2

[ass-array-element]
Γ ` array of typeN Γ ` exp : typeN typeN ∈ primitiveType Γ ` ArrayDim

Γ ` x ArrayDim :=exp

[ass-array]
Γ ` x : arrayoftypeN Γ ` exp : typeN

Γ ` (xarrayDim := exp)

Table D.11: Assignment type rules

176

D. DOGS Formal Type System D.4 Expression Rules

[for-downto-loop]
Γ, x : integer ` � Γ ` i2 : integer Γ ` S

Γ ` for x:= i1 downto i2 do S

[foreach-loop]
Γ ` � Γ ` typeN Γ ` x = {array of typeN , set of typeN}
Γ ` S where typeN ∈ primitiveType

Γ ` foreach typeN x in x do S

[foreach-where-loop]
Γ, x : typeN ` � Γ ` typeN Γ ` x = {array of typeN , set of typeN}
Γ ` S Γ ` b : boolean where typeN ∈ primitiveType

Γ ` foreach typeN x in x where b do S

[while-do-loop]
Γ ` b : boolean Γ ` S

Γ ` while b do S

[do-while-loop]
Γ ` b : boolean Γ ` S

Γ ` do S while b

[for-to-loop]
Γ, x : integer ` � Γ ` i2 : integer Γ ` S

Γ ` for x:= i1 to i2 do S

Table D.12: Loop type rules

177

D.4 Expression Rules D. DOGS Formal Type System

[if-statement]
Γ ` b : boolean Γ ` S

Γ ` if b then S

[if-else-statement]
Γ ` b : boolean Γ ` S1 Γ ` S2

Γ ` if b then S1 else S2

[comm-block]
Γ ` S1 Γ ` S2

Γ ` S1S2

[switch]
Γ ` x : integer Γ ` S

Γ ` switch x S endswitch

[increment-decrement]
Γ ` x : typeN typeN ∈ {float, integer}

Γ ` x : typeN

Where = {++,−−}

Table D.13: General command type rules

178

D. DOGS Formal Type System D.4 Expression Rules

[proc-call]
Γ ` x : proc A A ` ParA

Γ ` x(ParA)

[begin-end]
Γ ` S

Γ ` begin S end

[array-dim]
Γ ` ArrayDim Γ ` i : integer

Γ ` [i] ArrayDim

[LetIn]
Γ ` Dv ∴ (A) Γ, A ` S

Γ ` (let Dv in S)

Table D.14: General command type rules, cont.

[ParA]
Γ ` exp : typeN

Γ ` (exp, ParA) : typeN ,type′N

Table D.15: Actual parameter rules

179

D.4 Expression Rules D. DOGS Formal Type System

[arit-gen-]
Γ ` exp1 : integer Γ ` exp2 : integer

Γ ` exp1 # exp2 : integer

where # = {+, -, *, div, mod}

[arit-gen]
Γ ` exp1 : float Γ ` exp2 : float

Γ ` exp1 # exp2 : float

where # = {+, -, *, /}

[arit-gen-]
Γ ` exp : typeN typeN ∈ {integer, float}

Γ ` # exp : typeN

where # = {+, -}

Table D.16: Type rules for arithmetic expressions

180

D. DOGS Formal Type System D.4 Expression Rules

[concat-string]
Γ ` exp1 : string Γ ` exp2 : string

Γ ` exp1&exp2 : string

[bool-op]
Γ ` exp1 : boolean Γ ` exp2 : boolean

Γ ` exp1 # exp2 : boolean

where # = {or, and, xor}

[equal-string]
Γ ` exp1 : string Γ ` exp2 : string

Γ ` exp1 # exp2 : boolean

where # = {<>, =}

[bool-not]
Γ ` exp : boolean

Γ ` not exp : boolean

[bool-gen]
Γ ` exp1 : typeN Γ ` exp2 : typeN

Γ ` exp1 # exp2 : boolean

where # = {<>, =, <=, >=, <, >}
and typeN = {integer, float, boolean}

Table D.17: Type rules booleean expressions

181

D.4 Expression Rules D. DOGS Formal Type System

[expr-par]
Γ ` S

Γ ` (S)

[function-call]
Γ ` x : A→ typeN Γ, A ` ParA

Γ ` (FuncN (ParA)) : typeN

[Weight]
Γ ` x : weight of typeN Γ ` exp : edge

Γ ` x(exp) : typeN

[label]
Γ ` x : label of typeN Γ ` exp : vertex

Γ ` x(exp) : typeN

[edge]
Γ ` x1 : vertex Γ ` x2 : vertex

Γ ` (x1, x2) : edge

Table D.18: General expression rules

182

Appendix E

Semantics

E.1 Generalized Variables

Generalized variabels are divided in semantics for variables and record variables.
The semantics for variables are on the form envRV , envV ` X → (typeN , l). The
semantics for record variables are on the form envRV , envV ` X → (env′V , env′RV).

183

E.1 Generalized Variables E. Semantics

[Gvar1]
env′RV , env′V ` 〈X〉 → (typeN , l)

envRV , envV ` 〈RecN .X〉 → (typeN , l)

where envRV (RecN) = (env′RV , env′V)

[Gvar2]
envRV , envV ` x→ (typeN , l)

where envV (x) = (typeN , l)

[Gvar1-Rec]
env′RV , env′V ` 〈X〉 → (env′′V , env′′RV)

envRV , envV ` 〈RecN .X〉 → (env′′V , env′′RV)

where envRV (RecN) = (env′V , env′RV)

[Gvar2-Rec]
envRV , envV ` RecN → (env′V , env′RV)

where envRV (RecN) = (env′V , env′RV)

Table E.1: Transition rules for generalized variables

184

E. Semantics E.2 Declarations

E.2 Declarations

All declarations are on the form envC , envF , envRT , envP ` 〈DV, envV , envRV , sto〉 →DV

env′V , env′RV , sto′.

[DV B-block]
envC , envF , envRT , envP ` 〈DV B1, envV , envRV , sto〉 →DV (env′′V , env′′RV , sto′′)
envC , envF , envRT , envP ` 〈DV B2, env′′V , env′′RV , sto′′〉 →DV (env′V , env′RV , sto′)

envC , envF , envRT , envP ` 〈DV B1DV B2, envV , envRV , sto〉 →DV (env′V , env′RV , sto′)

[DV R-rec-block]
envC , envF , envRT , envP ` 〈DV R1, envV , envRV , sto〉 →DV (env′′V , env′′RV , sto′′)
envC , envF , envRT , envP ` 〈DV R2, env′′V , env′′RV , sto′′〉 →DV (env′V , env′RV , sto′)

envC , envF , envRT , envP ` 〈DV R1,DV R2, envV , envRV , sto〉 →DV (env′V , env′RV , sto′)

[Dec-empty]
envC , envF , envRT , envP ` 〈ε, envV , envRV , sto〉 →DV (envV , envRV , sto)

Table E.2: Transition rules for variable declarations in blocks and records, and the
empty declaration

185

E.2 Declarations E. Semantics

[Var-dec-init]
envC , envF , envRT , envP ` 〈typeN x; envV , envRV , sto〉 →DV (env′V , env′RV , sto′′)
envC , envF , env′V , env′RV , envRT , envP ` 〈x := exp;, sto′′〉 → sto′

envC , envF , envRT , envP ` 〈typeN x:=exp;, envV , envRV , sto 〉 →DV

(env′V , env′RV , sto′)

[Var-dec]
envC , envF , envRT , envP ` 〈typeN x; envV , envRV , sto〉 →DV (envV [x 7→ (typeN , l)],

envRV , sto[stotypeN [l 7→ nil]])

where l = new(stotypeN)
typeN ∈ primitiveTypes

[Local-Const-dec-init]
envC , envF , envRT , envP ` 〈typeN x:=exp; envV , envRV , sto〉 →DV

(env′V , env′RV , sto′)
envC , envF , envRT , envP ` 〈constant typeN x:=exp; envV , envRV , sto 〉 →DV

(env′V , env′RV , sto′)

Table E.3: Transition rules for variable declarations

[RefPar-dec]
envC , envF , envRT , envP ` 〈typeN ref x:=X; envV , envRV , sto〉 →DV

(envV [x 7→ (typeN , l)], envRV , sto)

where envV , envRV ` X → (typeN , l)
typeN ∈ primitiveTypes ∪ {array of type′N , set of type′N ,

label of type′N ,weight of type′N , graph, diGraph}

[RefPar-rec-dec]
envC , envF , envRT , envP ` 〈typeN ref RecN :=X;envV , envRV , sto〉 →DV

(envV , envRV [RecN 7→ (env′V , env′RV)], sto)

where envV , envRV ` X → (env′V , env′RV)
typeN ∈ RecordType

Table E.4: Transition rules for reference declarations

186

E. Semantics E.2 Declarations

[Record-dec]
envC , envF , envRT , envP ` 〈 RtypeN RecN ;, envV , envRV , sto〉 →DV

envV , envRV [RecN 7→ (env′V , env′RV)], sto′

where envRT (Rtype) = (env′′V , env′′RV)
α(env′′V , env′′RV , sto) = (env′V , env′RV , sto′)

[Record-dec-help-function]
α(envV , envRV , sto) = (env′V , env′RV , sto′)

for each x ∈ envV

envV (x) = (typeN , l)
env′V [x 7→ (typeN , l′)]
l′ = new(stotypeN) and sto[l′ 7→ nil]
∅, ∅, env′V [x′ 7→ (typeN , l)], ∅, ∅, ∅ ` 〈x:=x′;, sto′′〉 → sto(3)

for each RecN ∈ envRV

envRV (RecN) = (env
(3)
V , env

(3)
RV))

α(env
(3)
V , env

(3)
RV , sto(3)) = (env′′V , env′′RV , sto′)

env′RV = envRV [RecN 7→ (env′′V , env′′RV)]

Table E.5: Transition rules for declaration of record variables

187

E.2 Declarations E. Semantics

[Array-dec]
envC , envF , envRT , envP `
〈Arraydim, envV [temp 7→ (typeN , l + 1)], envRV , sto[stoarray[l 7→ l + 1][l + 1 7→ 0]]〉
→DV (env′V , envRV , sto′)

envC , envF , envRT , envP ` 〈array of typeN x Arraydim; envV , envRV , sto〉
→DV (envV [x 7→ (array, l)], envRV , sto′)

where l = new(stoarray)
and temp is a concrete variable name

[Array-dim]
envC , envF , envRT , envP ` 〈Arraydim, envV , envRV , sto′′[stoarray[l 7→ x + 1][l′ 7→ v]]〉

→DV (envV , envRV , sto′)
envC , envF , envRT , envP ` 〈[i] Arraydim, envV , envRV , sto〉 →DV (envV , envRV , sto′)

where envC , envF , envV , envRV , envRT , envP ` 〈i, sto〉 → (v, sto′′)
envV (temp) = (−, l)
x = stoarray(l)
l′ = new(stoarray)

[Array-dim-empty]
envC , envF , envRT , envP ` 〈ε, envV , envRV , sto〉
→DV (envV , envRV , sto[stoarray[l + s + j 7→ nil]])

where envV (temp) = (−, l)
s = stoarray(l)
ni=1, ni=2, ..., ni=s = stoarray(l + i)
m = n1 · n2 · ... · ns

j = 1, 2, ...,m

Table E.6: Transition rules for array declaration

188

E. Semantics E.2 Declarations

[Label-dec]
envC , envF , envRT , envP ` 〈label in X of typeN x;, envV , envRV , sto〉

→DV (envV [x 7→ (label, l)], envRV ,
sto[stolabel[l 7→ (l′, l + 1)]

[l + i 7→ (nil, l + i + 1)]
[l + noV ertices 7→ (nil, nil)]

stographProp[l(4) 7→ (l, label, l(3))]
[l′′ 7→ (v + 1,−, l(4))]]

where l = new(stolabel)
envRV , envV ` X → (graph, l′)
stograph(l′) = (noV ertices, l′′)
i = 1, 2, . . . , noV ertices− 1
stographProp(l′′) = (v,−, l(3))
l(4) = new(stographProp)

[Weight-dec]
envC , envF , envRT , envP ` 〈weight in X of typeN x;, envV , envRV , sto〉

→DV (envV [x 7→ (weight, l)], envRV ,
sto[stoweight[l 7→ (l′, l + 1)]

[l + i 7→ (nil, l + i + 1)]
[l + noV ertices2 7→ (nil, nil)]

stographProp[l(4) 7→ (l, weight, l(3))]
[l′′ 7→ (v + 1,−, l(4))]]

where l = new(stoweight)
envRV , envV ` X → (graph, l′)
stograph(l′) = (noV ertices, l′′)
i = 1, 2, . . . , noV ertices2 − 1
stographProp(l′′) = (v,−, l(3))
l(4) = new(stographProp)

Table E.7: Transition rules for weight and label declaration

189

E.2 Declarations E. Semantics

[Graph-dec]
envC , envF , envRT , envP ` 〈graph x;, envV , envRV , sto 〉 →DV

(envV [x 7→ (graph, l)], envRV ,
sto[stograph[l 7→ (0, l + 1)]
[l + 1 7→ (l′, nil)],
stographProp[l′ 7→ (0, integer, nil)]])

where l = new(stograph)
l′ = new(stographProp)

[DiGraph-dec]
envC , envF , envRT , envP ` 〈diGraph x;, envV , envRV , sto 〉 →DV

(envV [x 7→ (digraph, l)], envRV ,
sto[stograph[l 7→ (0, l + 1)]
[l + 1 7→ (l′, nil)],
stographProp[l′ 7→ (0, integer, nil)]])

where l = new(stograph)
l′ = new(stographProp)

Table E.8: Transition rules for graph declarations

[Set-dec]

envC , envF , envRT , envP ` 〈set of typeN x;, envV , envRV , sto〉 →DV (envV [x 7→ (set, l)], envRV ,
sto[stoset[l 7→ (0, nil)]]

where l = new(stoset)

Table E.9: Transition rules for set declaration

190

E. Semantics E.3 Record type Declarations

E.3 Record type Declarations

All record type declarations are on the form 〈DR, envRT , sto〉 →DR (env′RT , sto′)
(can be found in Tabel E.10).

[DR-block]
〈DR1, envRT , sto〉 →DR (env′′RT , sto′′)
〈DR2, env′′RT , sto′′〉 →DR (env′RT , sto′)
〈DR1DR2, envC , sto〉 →DR (env′RT , sto′)

[Record-type-dec]
∅, ∅, envRT , ∅ ` 〈DV R, ∅, ∅, sto〉 →DV (envV , envRV , sto′′)
〈DR, envRT [RTypeN 7→ (envV , envRV)], sto′′〉 →DR (env′RT , sto′)
〈record RTypeN VV R; DR, envRT , sto〉 →DR (env′RT , sto′)

Table E.10: Transition rules for record type declaration

191

E.4 Global Constant Declarations E. Semantics

E.4 Global Constant Declarations

All global constant declarations are on the form 〈DC , envC , sto〉 →DC env′C , sto′.

[DC-block]
〈DC1, envC , sto〉 →DC (env′′C , sto′′)
〈DC2, env′′C , sto′′〉 →DC (env′C , sto′)
〈DC1DC2, envC , sto〉 →DC (env′C , sto′)

[Const-dec]
〈typeN x := exp; envC , sto〉 →DC (envC [x 7→ (typeN , l)], sto′[stotypeN [l 7→ v]])

where envC , envF , ∅, ∅, ∅, ∅ ` 〈exp, sto〉 →exp (v, sto′)
l = new(stotypeN)
typeN ∈ primitiveTypes

[Const-dec-empty]
〈ε, envC , sto〉 →DC (envC , sto)

Table E.11: Transition rules for global constant declarations

192

E. Semantics E.5 Procedure and Function Declarations

E.5 Procedure and Function Declarations

Procedure and function declarations are on the form envRT ` 〈DB, envF , envP 〉 →DB

(env′F , env′P).

[DB-block]
envRT ` 〈DB1, envF , envP 〉 →DB (env′′F , env′′P)
envRT ` 〈DB2, env′′F , env′′P 〉 →DB (env′F , env′P)

envRT ` 〈DB1DB2, envF , envP 〉 →DB (env′F , env′P)

[DB-empty]
envRT ` 〈ε, envF , envP 〉 →DB (envF , envP)

Table E.12: Transition rules function and procedure declaration block

193

E.6 Formal-Parameter Declarations E. Semantics

[Func-dec]
envRT , temp[i 7→ 0] ` 〈ParF ,Ø〉 →ParF envPAR

envRT ` 〈function typeN FuncN (ParF) begin S end, envF , envP 〉 →DB (env′F , envP)

where env′F = envF [FuncN 7→ (S, ∅, typeN , envPAR)]

[Func-dec-letIn]
envRT , temp[i 7→ 0] ` 〈ParF ,Ø〉 →ParF envPAR

envRT ` 〈function typeN FuncN (ParF) let DV in begin S end, envF , envP 〉
→DB (env′F , envP)

where env′F = envF [FuncN 7→ (S, DV , typeN , envPAR)]

[Proc-dec]
envRT , temp[i 7→ 0] ` 〈ParF ,Ø〉 →ParF envPAR

envRT ` 〈procedure ProcN (ParF) begin S end, envF , envP 〉 →DB (envF , env′P)

where env′P = envP [ProcN 7→ (S, ∅, envPAR)]

[Proc-dec-LetIn]
envRT , temp[i 7→ 0] ` 〈ParF ,Ø〉 →ParF envPAR

envRT ` 〈procedure ProcN (ParF) let DV in begin S end, envF , envP 〉 →DB (envF , env′P)

where env′P = envP [ProcN 7→ (S, DV , envPAR)]

Table E.13: Transition rules declaration of procedures and functions

E.6 Formal-Parameter Declarations

Formal-parameter declarations are on the form envRT , temp ` 〈ParF , envPAR〉 →ParF

env′PAR.

194

E. Semantics E.6 Formal-Parameter Declarations

[ParF-dec]
envRT , temp[i 7→ i′] ` 〈ParF , envPAR[i′ 7→ (x, typeN , ff)]〉 →ParF env′PAR

envRT , temp ` 〈typeN x,ParF , envPAR〉 →ParF env′PAR

where i′ = temp(i) + 1
typeN = primitiveTypes ∪ {set of type′N , array of type′N}

∪RecordType

[ParF-dec-graph]
envRT , temp[i 7→ i′] ` 〈ParF , envPAR[i′ 7→ (x, typeN , tt)]〉 →ParF env′PAR

envRT , temp ` 〈typeN x,ParF , envPAR〉 →ParF env′PAR

where i′ = temp(i) + 1
typeN = {graph, diGraph, label of type′N ,weight of type′N}

[ParF-dec-ref]
envRT , temp[i 7→ i′] ` 〈ParF , envPAR[i′ 7→ (x, typeN , tt)]〉 →ParF env′PAR

envRT , temp ` 〈ref typeN x,ParF , envPAR〉 →ParF env′PAR

where i′ = temp(i) + 1
typeN = primitiveTypes ∪ {set of type′N , array of type′N}

∪RecordType

[ParF-dec-empty]
envRT , temp ` 〈ε, envPAR〉 →ParF envPAR

Table E.14: Transition rules for formal-parameter declarations

195

E.7 Program and Import E. Semantics

E.7 Program and Import

The program transistion rule is on the form 〈program imp DR DC DB, ∅〉 → sto.
The import transistion rules is on the form 〈DR, envC , envRT , envF , envP , sto〉 →Imp

(env′C , env′RT , env′F , env′P , sto′).

[Program]
〈Imp, ∅, ∅, ∅, ∅, ∅〉 →Imp (envC , envRT , envF , envP , sto)
〈DR, envRT , sto〉 →DR (env′RT , sto′)
〈DC , envC , sto′〉 →DC (env′C , sto′′)

env′RT ` 〈DB, envF , envP 〉 →DB (env′F , env′P)
env′C , env′F , env′V [break 7→ (boolean, l)][return 7→ (boolean, l′)], env′RV , env′RT , env′P `

〈main(input);, sto′′[stoboolean[l 7→ ff][l′ 7→ ff]]〉 → sto(3)

〈program Imp DR DC DB, ∅〉 → sto(3)

where input is an array of strings from the console
new(boolean) = l
l + 1 = l′

[Import]
〈DR, envRT , sto〉 →DR (env′′RT , sto′′)
〈DC , envC , sto′′〉 →DR (env′′C , sto(3))

env′′RT ` 〈DB, envF , envP 〉 →DB (env′′F , env′′P)
〈Imp, env′′C , env′′RT , env′′F , env′′P , sto(3)〉 →Imp (env′C , env′RT , env′F , env′P , sto′)

〈import str; Imp, envC , envRT , envF , envP 〉 →Imp (env′C , env′RT , env′F , env′P , sto′)

where fileLoad(str) = (DR, DC , DB)

[Import-empty]
〈ε, envC , envRT , envF , envP , sto〉 →Imp (envC , envRT , envF , envP , sto)

Table E.15: Transition rules for program execution and import

196

E. Semantics E.8 Commands

E.8 Commands

All command transitions are on the form envC , envF , envV , envRV , envRT , envP `
〈S, sto〉 → sto′.

197

E.8 Commands E. Semantics

[Ass-primitive]
envC , envF , envV , envRV , envRT , envP ` 〈X:=exp;, sto〉 → sto′[stotypeN [l 7→ v]]

where envC , envF , envV , envRV , envRT , envP ` 〈exp, sto〉 →exp (v, sto′)
envRV , envV ` X → (typeN , l)
typeN ∈ primitiveTypes \float

[Ass-float]
envC , envF , envV , envRV , envRT , envP ` 〈X:=exp;, sto〉 → sto′[stotypeN [l 7→ v]]

where envC , envF , envV , envRV , envRT , envP ` 〈exp, sto〉 →exp (v′, sto′)
v = floatV alue(v′)
envRV , envV ` X → (typeN , l)
typeN = float

[Ass-set]
envC , envF , envV , envRV , envRT , envP ` 〈X:=exp;, sto〉 →

sto′[stoset[sLoc′ 7→ (size, l)][l + i− 1 7→ (vi, l + i)][l + size− 1 7→ (−, nil)]]

where envRV , envV ` X → (set, sLoc′)
envC , envF , envV , envRV , envRT , envP ` 〈exp, sto〉 →exp (sLoc′′, sto′)
l = new(stoset)
(size, Loc) = stoset(sLoc′′)
li = Loc (i = 1)
(vi, li+1) = stoset(li)
i = 1, 2, ..., size

[Ass-array]
envC , envF , envV , envRV , envRT , envP ` 〈X:=exp;, sto〉 →

sto′[stoarray[aLoc′ 7→ l][l + i 7→ vi]]

where envRV , envV ` X → (array, aLoc′)
envC , envF , envV , envRV , envRT , envP ` 〈exp, sto〉 →exp (aLoc′′, sto′)
aLoc′′2 = stoarray(aLoc′′)
l = new(stoarray)
vi = stoarray(aLoc′′2 + i)
i = 0, 1, ..., size
dims = stoarray(aLoc′′2)
nj=1, nj=2, ..., nj=dims = stoarray(aLoc′′2 + j)
size = dims + n1 · n2 · . . . · ndims

Table E.16: Transition rules for primitive, set, and array assignments

198

E. Semantics E.8 Commands

[Ass-label-val]
envC , envF , envV , envRV , envRT , envP ` 〈x(exp1) := exp2;, sto〉 → sto′[stolabel[l 7→ v]]

where envRV , envV ` X → (label, lLoc)
envC , envF , envV , envRV , envRT , envP ` 〈exp1, sto〉 →exp (vLoc, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈exp2, sto

′′〉 →exp (v, sto′)
(graphLoc,−) = stolabel(lLoc)
(noV ertices, propLoc) = stograph(graphLoc)
vNo for which Γ(sto′graph, propLoc, vNo) = vLoc

and 0 < vNo ≤ noV ertices
l = (Γ(sto′label, lLoc, vNo))

[Ass-weight-val]
envC , envF , envV , envRV , envRT , envP ` 〈x(exp1) := exp2;, sto〉 → sto′[stolabel[l 7→ v]]

where envRV , envV ` X → (weight, wLoc)
envC , envF , envV , envRV , envRT , envP ` 〈exp1, sto〉

→exp (vLoc′ × vLoc′′, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈exp2, sto

′′〉 →exp (v, sto′)
(graphLoc,−) = stoweight(wLoc)
(noV ertices, propLoc) = sto′graph(graphLoc)
i for which Γ(sto′graph, propLoc, i) = Loc′

and 0 < i ≤ noV ertices
j for which Γ(sto′graph, propLoc, j) = Loc′′

and 0 < j ≤ noV ertices
eNo = (i− 1) · noV ertices + j
(v,−) = stoweight(Γ(stoweight, wLoc, eNo))
l = (Γ(sto′label, lLoc, vNo))

Table E.17: Transition rules for weight and label value assignments

199

E.8 Commands E. Semantics

[Ass-infty]
envC , envF , envV , envRV , envRT , envP ` 〈X:= infty;, sto〉 → sto[stotypeN [l 7→ infty]]

where envRV , envV ` X → (typeN , l)
typeN ∈ {integer, float}

[Ass-minus-infty]
envC , envF , envV , envRV , envRT , envP ` 〈X:= − infty;, sto〉 → sto[stotypeN [l 7→ −infty]]

where envRV , envV ` X → (typeN , l)
typeN ∈ {integer, float}

Table E.18: Transition rules for infty assignments

[Ass-rec-aggregate]
envC , envF , env′V , env′RV , envRT , envP ` 〈RecAggr, sto〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈RecN :={RecAggr};, sto〉 → sto′

where envRV (RecN) = (env′V , env′RV)

[Rec-aggregate]
envC , envF , envV , envRV , envRT , envP ` 〈S, sto〉 → sto′′

envC , envF , envV , envRV , envRT , envP ` 〈RecAggr, sto′′〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈SRecAggr, sto〉 → sto′

Table E.19: Transition rules for assignments of record-aggregates

200

E. Semantics E.8 Commands

[Ass-graph]
envC , envF , envV , envRV , envRT , envP ` 〈 X := exp;, sto 〉 → sto′[

stograph [gLoc′ 7→ (size, l)]
[l 7→ (pl, l + 1)]
[l + i 7→ (vi, l + 1 + i)]
[l + length 7→ (−, nil)],

stographProp [pl 7→ (psize, integer, pl + 1)]
[pl + i 7→ (pvi, integer, pl + i + 1)]
[pl + psize 7→ (−,−, nil)]]

where envRV , envV ` X → (−, gLoc′)
envC , envF , envV , envRV , envRT , envP ` 〈exp, sto〉 →exp (gLoc′′, sto′)
new(stograph) = l
stograph(gLoc′′) = (size, gpLoc)
stograph(gpLoc) = (gpLoc′, vLoc)
li = vLoc (i = 1)
(vi, li+1) = stograph(li)
i = 1, 2, . . . , length
length = size + size · size

and new(stographProp) = pl
stographProp(gpLoc′) = (psize, pLoc)
pli = pLoc (i = 1)
(pvi, typei, pli+1) = stographProp(pli)
i = 1, 2, . . . , psize

Table E.20: Transition rule for graph assignments

201

E.8 Commands E. Semantics

[Ass-record]
envC , envF , envV , envRV , envRT , envP ` 〈X := exp;, sto〉 → sto′

where envC , envF , envV , envRV , envRT , envP ` 〈exp, sto〉 →exp

((env′′V , env′′RV), sto′′)
envRV , envV ` X → (env′V , env′RV)
β((env′V , env′RV), (env′′V , env′′RV), sto′′) = sto′

[β]
β((envV , envRV), (env′V , env′RV), sto) = sto′

for each x ∈ envV

∅, ∅, envV [x′ 7→ (typeN , l)], envRV , ∅, ∅ `
〈x := x′, sto〉 → sto′′

(typeN , l) = env′V (x)
for each RecN ∈ envRV

β((env′′V , env′′RV), (env
(3)
V , env

(3)
RV), sto′′) = sto′

(env′′V , env′′RV) = envRV (RecN)
(env

(3)
V , env

(3)
RV) = env′RV (RecN)

Table E.21: Transition rule for record assignments

[Ass-array-element]
envC , envF , envV , envRV , envRT , envP , temp[arr 7→ l′′][v 7→ 0][dimNo 7→ 0] `

〈ArrayIndex, sto〉 →exp (v, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈X ArrayIndex := exp;, sto〉 → sto′[l 7→ v′]

where envC , envF , envV , envRV , envRT , envP ` 〈exp, sto′′〉 →exp (v′, sto′)
envRV , envV ` X → (array, l′)
l′′ = stoarray(l′)
dims = stoarray(l′′)
l = l′′ + dims + v

Table E.22: Transition rules for array element assignment

202

E. Semantics E.8 Commands

[If-true]
envC , envF , envV , envRV , envRT , envP ` 〈S, sto′′〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈if b then S, sto〉 → sto′

where envC , envF , envV , envRV , envRT , envP ` 〈b, sto〉 →b (tt, sto′′)

[If-false]
envC , envF , envV , envRV , envRT , envP ` 〈if b then S, sto〉 → sto′

where envC , envF , envV , envRV , envRT , envP ` 〈b, sto〉 →b (ff, sto′)

[If-else-true]
envC , envF , envV , envRV , envRT , envP ` 〈S1, sto

′′〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈if b then S1 else S2, sto〉 → sto′

where envC , envF , envV , envRV , envRT , envP ` 〈b, sto〉 →b (tt, sto′′)

[If-else-false]
envC , envF , envV , envRV , envRT , envP ` 〈S2, sto

′′〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈if b then S1 else S2, sto〉 → sto′

where envC , envF , envV , envRV , envRT , envP ` 〈b, sto〉 →b (ff, sto′′)

Table E.23: Transition rules if-statements

203

E.8 Commands E. Semantics

[While-true]
envC , envF , envV , envRV , envRT , envP ` 〈S, sto′′〉 → sto(3)

envC , envF , envV , envRV , envRT , envP ` 〈while b do S, sto(3)〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈while b do S, sto〉 → sto′

where envC , envF , envV , envRV , envRT , envP ` 〈b, sto〉 →b (tt, sto′′)
envV (break) = (boolean, l)
sto

(3)
boolean(l) = ff

[While-true-break]
envC , envF , envV , envRV , envRT , envP ` 〈S, sto′′〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈while b do S, sto〉 → sto′[stoboolean[l 7→ ff]]

where envC , envF , envV , envRV , envRT , envP ` 〈b, sto〉 →b (tt, sto′′)
envV (break) = (boolean, l)
sto′boolean(l) = tt

[While-false]
envC , envF , envV , envRV , envRT , envP ` 〈while b do S, sto〉 → sto′

where envC , envF , envV , envRV , envRT , envP ` 〈b, sto〉 →b (ff, sto′)

Table E.24: Transition rules for while..do loops

204

E. Semantics E.8 Commands

[Do-while-true]
envC , envF , envV , envRV , envRT , envP ` 〈S, sto〉 → sto′′

envC , envF , envV , envRV , envRT , envP ` 〈do S while b, sto(3)〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈do S while b, sto〉 → sto′

where envC , envF , envV , envRV , envRT , envP ` 〈b, sto′′〉 →b (tt, sto(3))
envV (break) = (boolean, l)
sto′′boolean(l) = ff

[Do-while-true-break]
envC , envF , envV , envRV , envRT , envP ` 〈S, sto〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈 do S while b, sto〉 → sto′[stoboolean[l 7→ ff]]

where envV (break) = (boolean, l)
sto′boolean(l) = tt

[Do-while-false]
envC , envF , envV , envRV , envRT , envP ` 〈S, sto〉 → sto′′

envC , envF , envV , envRV , envRT , envP ` 〈 do S while b, sto〉 → sto′

where envC , envF , envV , envRV , envRT , envP ` 〈b, sto′′〉 →b (ff, sto′)

Table E.25: Transition rules for do..while loops

205

E.8 Commands E. Semantics

[Comp]
envC , envF , envV , envRV , envRT , envP ` 〈S1, sto〉 → sto′′

envC , envF , envV , envRV , envRT , envP ` 〈S2, sto
′′〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈S1S2, sto〉 → sto′

where envV (return) = (boolean, l)
sto′′boolean(l) = ff

and envV (break) = (boolean, l)
sto′′boolean(l) = ff

[Comp-return]
envC , envF , envV , envRV , envRT , envP ` 〈S1, sto〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈S1S2, sto〉 → sto′

where envV (return) = (boolean, l)
sto′boolean(l) = tt

or envV (break) = (boolean, l′)
sto′boolean(l′) = tt

[Begin-end]
envC , envF , envV , envRV , envRT , envP ` 〈S, sto〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈begin S end, sto〉 → sto′

[Return]
envC , envF , envV , envRV , envRT , envP ` 〈returnvalue textbf:= exp;, sto〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈return exp;, sto〉 → sto′[stoboolean[l 7→ tt]]

where envV (return)→ (boolean, l)

[Break]
envC , envF , envV , envRV , envRT , envP ` 〈breaktextbf;, sto〉 → sto[stoboolean[l 7→ tt]]

where envV (break)→ (boolean, l)

[Com-empty]
envC , envF , envV , envRV , envRT , envP ` 〈ε, sto〉 → sto

Table E.26: Transition rules for composite commands, begin-end, break, and return

206

E. Semantics E.8 Commands

[Proc-call]
envPAR, envC , envV , envRV , envRT , envF , temp[i 7→ 0] ` 〈ParA, ∅, ∅, sto〉

→ParA (env′V , env′RV , sto′′)
envC , envF , envRT , envP ` 〈DV, env′V , env′RV , sto′′〉 →DV (env′′V , env′′RV , sto(3))

envC , envF , env′′V , env′′RV , envRT , envP ` 〈S, sto(3)〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈ProcN (ParA);, sto〉 → sto′

where envP (ProcN) = (S, DV, envPAR)

Table E.27: Transition rules for procedure calls

207

E.8 Commands E. Semantics

[For-to-true]
envC , envF , envV [x 7→ (integer, l′)], envRV , envRT , envP ` 〈S, sto(3)[stointeger[l′ 7→ v1]]〉 → sto(4)

envC , envF , envV , envRV , envRT , envP ` 〈for x := int1 to int2 do S, sto(4)〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈for x := i1 to i2 do S, sto〉 → sto′

where envV (break) = (boolean, l)
sto

(4)
boolean(l) = ff

envC , envF , envV , envRV , envRT , envP ` 〈i1, sto〉 →i (v1, sto
′′)

envC , envF , envV , envRV , envRT , envP ` 〈i2, sto′′〉 →i (v2, sto
(3))

v1 ≤ v2

int1 = LittType−1(v1 + 1)
int2 = LittType−1(v2)
l′ = new(stointeger)

[For-to-true-break]
envC , envF , envV [x 7→ (integer, l′)], envRV , envRT , envP ` 〈S, sto(3)[stointeger[l′ 7→ v1]]〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈for x := i1 to i2 do S, sto〉 → sto′[stoboolean[l 7→ ff]]

where envV (break) = (boolean, l)
sto′boolean(l) = tt
envC , envF , envV , envRV , envRT , envP ` 〈i1, sto〉 →i (v1, sto

′′)
envC , envF , envV , envRV , envRT , envP ` 〈i2, sto′′〉 →i (v2, sto

(3))
v1 ≤ v2

l′ = new(stointeger)

[For-to-false]
envC , envF , envV , envRV , envRT , envP ` 〈for x := i1 to i2 do S, sto〉 → sto′

where envC , envF , envV , envRV , envRT , envP ` 〈i1, sto〉 →i (v1, sto
′′)

envC , envF , envV , envRV , envRT , envP ` 〈i2, sto′′〉 →i (v2, sto
′)

v1 > v2

Table E.28: Transition rules for for..to loops

208

E. Semantics E.8 Commands

[For-downto-true]
envC , envF , envV [x 7→ integer, l′], envRV , envRT , envP ` 〈S, sto(3)[stointeger[l′ 7→ v1]]〉 → sto(4)

envC , envF , envV , envRV , envRT , envP ` 〈for x := int1 downto int2 do S, sto(4)〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈for x := i1 downto i2 do S, sto〉 → sto′

where envV (break) = (boolean, l)
sto

(4)
boolean(l) = ff

envC , envF , envV , envRV , envRT , envP ` 〈i1, sto〉 →i (v1, sto
′′)

envC , envF , envV , envRV , envRT , envP ` 〈i2, sto′′〉 →i (v2, sto
(3))

v1 ≥ v2

int1 = LittType−1(v1 − 1)
int2 = LittType−1(v2)
l′ = new(stointeger)

[For-downto-true-break]
envC , envF , envV [x 7→ typeN , l′], envRV , envRT , envP ` 〈S, sto(3)[stotypeN [l′ 7→ v1]]〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈for x := i1 downto i2 do S, sto〉
→ sto′[stoboolean[l 7→ ff]]

where envV (break) = (boolean, l)
sto′boolean(l) = tt
envC , envF , envV , envRV , envRT , envP ` 〈i1, sto〉 →i (v1, sto

′′)
envC , envF , envV , envRV , envRT , envP ` 〈i2, sto′′〉 →i (v2, sto

(3))
v1 ≥ v2

l′ = new(stointeger)

[For-downto-false]
envC , envF , envV , envRV , envRT , envP ` 〈for x := i1 downto i2 doS, sto〉 → sto′

where envC , envF , envV , envRV , envRT , envP ` 〈i1, sto〉 →i (v1, sto
′′)

envC , envF , envV , envRV , envRT , envP ` 〈i2, sto′′〉 →i (v2, sto
′)

v1 < v2

Table E.29: Transition rules for for..downto loops

209

E.8 Commands E. Semantics

[For-each-set]
envC , envF , envV , envRV , envRT , envP ` 〈foreach typeN x in X do S, sto〉 →

sto(size)[stoboolean[l′ 7→ ff]]

where envRV , envV ` X → (set, l)
envV (break) = (boolean, l′)
(size,−) = stoset(l)
envC , envF , envV [x 7→ (typeN , li)], envRV , envRT , envP `
〈if (return = false and break = false) then S, sto(i−1)〉
→ sto(i)

i = 1, 2, . . . , size

sto(0) = sto
li = Γ(stoset, li−1, 1)
l0 = l

[For-each-where-set]
envC , envF , envV , envRV , envRT , envP ` 〈foreach typeN x in X do S where b, sto〉

→ sto(size)[stoboolean[l′ 7→ ff]]

where envRV , envV ` X → (set, l)
envV (break) = (boolean, l′)
(size,−) = stoset(l)
envC , envF , envV [x 7→ (typeN , li)], envRV , envRT , envP `
〈if (return = false and break = false)
then if b then S, sto(i−1)〉
→ sto(i)

i = 1, 2, . . . , size

sto(0) = sto
li = Γ(stoset, li−1, 1)
l0 = l

Table E.30: Transition rules for for..each loops for sets

210

E. Semantics E.8 Commands

[For-each-array]
envC , envF , envV , envRV , envRT , envP ` 〈 foreach typeN x in X do S, sto〉

→ sto(noelem)[stoboolean[l′ 7→ ff]]

where envRV , envV ` X → (array, l)
envV (break) = (boolean, l′)
dimLoc = stoarray(l)
nodims = stoarray(dimLoc)
noelem = size(1) · size(2) · . . . · size(nodims)
size(y) = stoarray(dimLoc + y)
i = 1, 2, . . . , noelem
envC , envF , envV [x 7→ (typeN , li)], envRV , envRT , envP `
〈if (return = false and break = false) then S, sto(i−1)〉
→ sto(i)

sto(0) = sto
li = dimLoc + nodims + i

[For-each-where-array]
envC , envF , envV , envRV , envRT , envP ` 〈 foreach typeN x in X do S where b, sto〉

→ sto(noelem)[stoboolean[l′ 7→ ff]]

where envRV , envV ` X → (array, l)
envV (break) = (boolean, l′)
dimLoc = stoarray(l)
nodims = stoarray(dimLoc)
noelem = size(1) · size(2) · . . . · size(nodims)
size(y) = stoarray(dimLoc + y)
i = 1, 2, . . . , noelem
envC , envF , envV [x 7→ (typeN , li)], envRV , envRT , envP `
〈if (return = false and break = false) then
if b then S, sto(i−1)〉
→ sto(i)

sto(0) = sto
li = dimLoc + nodims + i

Table E.31: Transition rules for for..each loops for arrays

211

E.8 Commands E. Semantics

[Plusplus]
envC , envF , envV , envRV , envRT , envP ` 〈X++, sto〉 → sto[stotypeN [l 7→ v + 1]]

where envRV , envV ` X → (typeN , l)
typeN ∈ {integer, float}
v = stotypeN (l)

[Minusminus]
envC , envF , envV , envRV , envRT , envP ` 〈X−−, sto〉 → sto[stotypeN [l 7→ v − 1]]

where envRV , envV ` X → (typeN , l)
typeN ∈ {integer, float}
v = stotypeN (l)

Table E.32: Transition rules for ++ and -- commands

212

E. Semantics E.8 Commands

[Switch]
envC , envF , envV [break 7→ (boolean, l′)], envRV , envRT , envP , temp[v 7→ v′] `

〈S, sto[l′ 7→ ff]〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈switch X S endswitch , sto〉 → sto′

where envC , envF , envV , envRV , envRT , envP ` 〈X, sto〉 →exp (v′, sto)
l′ = new(stoboolean)

[Switch-case-true]
envC , envF , envV , envRV , envRT , envP , temp ` 〈S, sto〉 → sto′

envC , envF , envV , envRV , envRT , envP , temp ` 〈case int: S, sto〉 → sto′[stoboolean[l 7→ tt]]

where v′ = temp(v)
v′′ = LittType(int)
v′ = v′′

(boolean, l) = envV (break)

[Switch-case-false]
envC , envF , envV , envRV , envRT , envP , temp ` 〈case int: S, sto〉 → sto

where v′ = temp(v)
v′′ = LittType(int)
v′ 6= v′′

[Switch-caseInterval-true]
envC , envF , envV , envRV , envRT , envP , temp ` 〈S, sto〉 → sto′

envC , envF , envV , envRV , envRT , envP , temp ` 〈case int1..int2: S, sto〉 → sto′[stoboolean[l 7→ tt]]

where v′ = temp(v)
v′′ = LittType(int1)
v(3) = LittType(int2)
v′′ ≤ v′ ≤ v(3)

(boolean, l) = envV (break)

Table E.33: Transition rules for switch

213

E.8 Commands E. Semantics

[Switch-caseInterval-false]
envC , envF , envV , envRV , envRT , envP , temp ` 〈case int1..int2: S, sto〉 → sto

where v′ = temp(v)
v′′ = LittType(int1)
v(3) = LittType(int2)
(v′ < v′′) ∨ (v′ > v(3))

[Switch-default-breakFalse]
envC , envF , envV , envRV , envRT , envP ` 〈S, sto〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈default : S, sto〉 → sto′

where envV (break) = (boolean, l)

stoboolean(l) = ff

[Switch-default-breakTrue]
envC , envF , envV , envRV , envRT , envP ` 〈default : S, sto〉 → sto[stoboolean[l 7→ ff]]

where envV (break) = (boolean, l)

stoboolean(l) = tt

Table E.34: Transition rules for switch continued

214

E. Semantics E.9 Procedures and Functions in Standard Environment

E.9 Procedures and Functions in Standard Environment

The procedures and functions in the standard environment are on the semantic form
of commands and expressions respectively.

[getVertex]
envC , envF , envV , envRV , envRT , envP ` 〈exp, sto〉 →exp (gLoc, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈w, sto′′〉 →w (v, sto′)

envC , envF , envV , envRV , envRT , envP ` 〈getV ertex(exp, w);, sto〉 →exp (Loc, sto′)

where Loc for which stograph(Γ(sto′graph, propLoc, i)) = (v,−)
0 < i ≤ noV ertices
sto′graph(gLoc) = (noV ertices, propLoc)

[vertices]
envC , envF , envV , envRV , envRT , envP ` 〈exp, sto〉 →exp (gLoc, sto′)

envC , envF , envV , envRV , envRT , envP ` 〈vertices(exp);, sto〉 →exp (sLoc, sto(noV ertices))

where sLoc = new(stoset)
envC , envF , envV [graph 7→ (graph, gLoc)][vertex 7→ (vertex, vLoci)]],
envRV , envRT , envP ` 〈addToSet(graph, vertex);, sto(i−1)〉
→ sto(i)

sto(0) = sto′

vLoci = Γ(sto(i−1)
graph, vLoci−1, 1)

vLoc0 = propLoc
sto′graph(gLoc) = (noV ertices, propLoc)
i = 1, 2, · · · , noV ertices

Table E.35: Transition rules for getVertex and vertices

215

E.9 Procedures and Functions in Standard Environment E. Semantics

[nameOfVertex]
envC , envF , envV , envRV , envRT , envP ` 〈exp, sto〉 →exp (vLoc, sto′)

envC , envF , envV , envRV , envRT , envP ` 〈NameOfVertex(exp);, sto〉 →exp (v, sto′)

where sto′graph(vLoc) = (v,−)

[sizeOfSet]
envC , envF , envV , envRV , envRT , envP ` 〈exp, sto〉 →exp (sLoc, sto′)

envC , envF , envV , envRV , envRT , envP ` 〈sizeOfSet(exp);, sto〉 →exp (v, sto′)

where sto′set(sLoc) = (s,−)

Table E.36: Transition rules for nameOfVertexx and sizeOfSet from the Standard
Environment

[addVertex]
envC , envF , envV , envRV , envRT , envP ` 〈Si=1Si=2 . . . Si=noProp, sto

(3)〉 → sto(4)

envC , envF , envV , envRV , envRT , envP ` 〈extend(propLoc, graph, noV ertices), sto(4)〉 → sto(5)

envC , envF , envV , envRV , envRT , envP ` 〈extendmatrix(newLoc, graph, noV ertices), sto(5)〉
→ sto′

envC , envF , envV , envRV , envRT , envP ` 〈addV ertex(exp, w);, sto〉 →
sto′[stograph[gLoc 7→ (noV ertices + 1,−)][newLoc 7→ (v,−)]]

where envC , envF , envV , envRV , envRT , envP ` 〈exp, sto〉 →exp (gLoc, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈w, sto′′〉 →w (v, sto(3))
sto

(3)
graph(gLoc) = (noV ertices, propLoc)

sto
(3)
graphProp(propLoc) = (noProp,−,−)

i = 1, 2, . . . , noProp
l0 = propLoc

(l′i, typei, li) = sto
(3)
prop(li−1)

Si = extend(l′i, label, noV ertices) (if typei = label)
Si = extendmatrix(l′i, weight, noV ertices) (if typei = weight)
newLoc = Γ(sto(5)

graph, propLoc, noV ertices + 1)

Table E.37: Transition rule for the addVertex procedure.

216

E. Semantics E.9 Procedures and Functions in Standard Environment

[Extend]
envC , envF , envV , envRV , envRT , envP ` 〈extend(l, typeN , int), sto〉
→ sto[stotypeN [l′ 7→ (−, newLoc)][newLoc 7→ (nil, nextLoc)]]

where l′ = Γ(stotypeN , l, int)
(−, nextLoc) = stotypeN (l′)
newLoc = new(typeN)

Table E.38: Helper transition rules for extending a block of size int at location l in
stotypeN with an extra element.

[Extend-matrix]
envC , envF , envV , envRV , envRT , envP ` 〈S(i=1)S(i=2) . . . S(i=int), sto〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈 extendmatrix(l, typeN , int), sto〉 →
sto′[stotypeN [prevLoc 7→ (−, newLoc)]
[newLoc + i− 1 7→ (nil, newLoc + i)]
[newLoc + int− 1 7→ (nil, nil)]]

where li = Γ(stotypeN , li−1, int) (i > 0)
l0 = l
i = 1, 2, . . . , int
newLoc = new(sto′typeN

)
Si = extend(li, typeN , int)
lP rev = Γ(sto′typen

, l, (int) · (int + 1))

Table E.39: Helper transition rules for extending a matrix of int rows at location l
in stotypeN with an extra row and column.

217

E.9 Procedures and Functions in Standard Environment E. Semantics

[RemoveVertex]
envC , envF , envV , envRV , envRT , envP ` 〈Si=1Si=2 . . . Si=noProp, sto

(3)〉 → sto(4)

envC , envF , envV , envRV , envRT , envP ` 〈shrink(propLoc, graph, vNo), sto(4)〉 → sto(5)

envC , envF , envV , envRV , envRT , envP ` 〈shrinkmatrix(eLocs, graph, vNo, noV ertices), sto(5)〉
→ sto′

envC , envF , envV , envRV , envRT , envP ` 〈removevertex(exp1, exp2);, sto〉 →
sto′[stograph[gLoc 7→ ((noV ertices− 1),−)]]

where envC , envF , envV , envRV , envRT , envP ` 〈exp1, sto〉 →exp (gLoc, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈exp2, sto

′′〉 →exp (vLoc, sto(3))
vNo for which Γ(stograph, propLoc, vNo) = vLoc

and 0 < vNo < noV ertices

sto
(3)
graph(gLoc) = (noV ertices, propLoc)

sto
(3)
graphprop(propLoc) = (−, noprop,−)

eLocs = Γ(sto(3)
graph, propLoc, noV ertices)

i = 1, 2, . . . , noProp
l0 = propLoc

(l′i, typei, li) = sto
(3)
graphProp(li−1)

Si = shrink(l′i, label, noV ertices) if typei = label
Si = shrinkmatrix(l′i, weight, noV ertices) if typei = weight

Table E.40: Transition rules for the RemoveVertex procedure.

[Shrink]
envC , envF , envV , envRV , envRT , envP ` 〈shrink(l, typeN , int), sto〉

→ sto[stotypeN [l′ 7→ (−, l(3))]]

where l′ = Γ(stotypeN , l, int− 1)
stotypeN (l′) = (−, l′′)
stotypeN (l′′) = (−, l(3))

Table E.41: Helper transition rule removing element number int, counting from
location l in stotypeN .

218

E. Semantics E.9 Procedures and Functions in Standard Environment

[Shrink-matrix]
envC , envF , envV , envRV , envRT , envP ` 〈S(i=1)S(i=2) . . . S(i=int2−1), sto〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈shrinkmatrix(l, typeN , int1, int2), sto〉 →
sto′[stotypeN [l′ 7→ (−, l′′)]]

where i = 0, 1, . . . , int2 − 1
li = l (i = 0)
li = Γ(stotypeN , li−1, int2)
Si = shrink(li, typeN , int1) (i 6= int1 − 1)
Si = ε (i = int1 − 1)
l′ = Γ(sto′typeN

, l, (int2 − 1) · (int1 − 1)
l′′ = Γ(sto′typeN

, l′, int2 + 1)

Table E.42: Helper transition rule for removing element int1 from the matrix(with
int2 rows) located at location l in stotypeN .

[Is-vertex-in-graph-true]
envC , envF , envV , envRV , envRT , envP ` 〈exp1, sto〉 →exp (gLoc, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈exp2, sto

′′〉 →exp (vLoc, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈isV ertexInGraph(exp1, exp2);, sto〉 →b (tt, sto′)

where (noV ertices, propLoc) = sto′graph(gLoc)
li = Γ(sto′graph, li−1, 1)
l0 = propLoc
li = vLoc for some i ∈ {1, 2, ..., noV ertices}

[Is-vertex-in-graph-false]
envC , envF , envV , envRV , envRT , envP ` 〈exp1, sto〉 →exp (gLoc, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈exp2, sto

′′〉 →exp (vLoc, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈isV ertexInGraph(exp1, exp2);, sto〉 →b (ff, sto′)

where (noV ertices.propLoc) = sto′graph(gLoc)
li = Γ(sto′graph, li−1, 1)
l0 = propLoc
li 6= vLoc for all i ∈ {1, 2, ..., noV ertices}

Table E.43: Transition rules for isVertex from the standard environment

219

E.9 Procedures and Functions in Standard Environment E. Semantics

[isEdge-true]
envC , envF , envV , envRV , envRT , envP ` 〈exp1, sto〉 →exp (gLoc, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈exp2, sto

′′〉 →exp (vLoc′ × vLoc′′, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈isEdge(exp1, exp2);, sto〉 →b (tt, sto′)

sto′graph(gLoc) = (noV ertices, propLoc)
i for which Γ(sto′graph, propLoc, i) = vLoc′

j for which Γ(sto′graph, propLoc, j) = vLoc′′

0 < i < noV ertices
0 < j < noV ertices
eLoc = Γ(sto′graph, propLoc, noV ertices + (i− 1) · noV ertices + j)
sto′graph(eLoc) = 1

[isEdge-false]
envC , envF , envV , envRV , envRT , envP ` 〈exp1, sto〉 →exp (gLoc, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈exp2, sto

′′〉 →exp (vLoc′ × vLoc′′, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈isEdge(exp1, exp2) ;, sto〉 →b (ff, sto′)

sto′graph(gLoc) = (noV ertices, propLoc)
i for which Γ(sto′graph, propLoc, i) = vLoc′

j for which Γ(sto′graph, propLoc, j) = vLoc′′

0 < i < noV ertices
0 < j < noV ertices
eLoc = Γ(sto′graph, propLoc, noV ertices + (i− 1) · noV ertices + j)
stograph(eLoc) = 0

Table E.44: Transition rules for isEdge from the Standard Environment

220

E. Semantics E.9 Procedures and Functions in Standard Environment

[AddEdge-graph]
envC , envF , envV , envRV , envRT , envP ` 〈addEdge(exp1, exp2);, sto〉

→ sto′[stograph[eLoc′ 7→ 1][eLoc′′ 7→ 1]]

where envC , envF , envV , envRV , envRT , envP ` 〈exp1, sto〉 →exp

(gLoc′, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈exp2, sto

′′〉 →exp

(vLoc′ × vLoc′′, sto′)
sto′graph(gLoc) = (noV ertices, propLoc)
i for which Γ(sto′graph, propLoc, i) = vLoc′

j for which Γ(sto′graph, propLoc, j) = vLoc′′

0 < i < noV ertices
0 < j < noV ertices
eLoc′ = Γ(sto′graph, propLoc, noV ertices + (i− 1) · noV ertices + j)
eLoc′′ = Γ(sto′graph, propLoc, noV ertices + (j − 1) · noV ertices + i)

[AddEdge-diGraph]
envC , envF , envV , envRV , envRT , envP ` 〈addEdge(exp1, exp2);, sto〉

→ sto′[stograph[eLoc′ 7→ 1]]

where envC , envF , envV , envRV , envRT , envP ` 〈exp1, sto〉 →exp

(gLoc′, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈exp2, sto

′′〉 →exp

(vLoc′ × vLoc′′, sto′)
sto′graph(gLoc) = (noV ertices, propLoc)
i for which Γ(sto′graph, propLoc, i) = vLoc′

j for which Γ(sto′graph, propLoc, j) = vLoc′′

0 < i < noV ertices
0 < j < noV ertices
eLoc′ = Γ(sto′graph, propLoc, noV ertices + (i− 1) · noV ertices + j)

Table E.45: Transition rules for addEdge from the Standard Environment

221

E.9 Procedures and Functions in Standard Environment E. Semantics

[RemoveEdge-graph]
envC , envF , envV , envRV , envRT , envP ` 〈removeEdge(exp1, exp2);, sto〉

→ sto′[stograph[eLoc′ 7→ 0][eLoc′′ 7→ 0]]

where envC , envF , envV , envRV , envRT , envP ` 〈exp1, sto〉 →exp

(gLoc′, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈exp2, sto

′′〉 →exp

(vLoc′ × vLoc′′, sto′)
sto′graph(gLoc) = (noV ertices, propLoc)
i for which Γ(sto′graph, propLoc, i) = vLoc′

j for which Γ(sto′graph, propLoc, j) = vLoc′′

0 < i < noV ertices
0 < j < noV ertices
eLoc′ = Γ(sto′graph, propLoc, noV ertices + (i− 1) · noV ertices + j)
eLoc′′ = Γ(sto′graph, propLoc, noV ertices + (j − 1) · noV ertices + i)

[RemoveEdge-diGraph]
envC , envF , envV , envRV , envRT , envP ` 〈removeEdge(exp1, exp2);, sto〉

→ sto′[stograph[eLoc′ 7→ 0]]

where envC , envF , envV , envRV , envRT , envP ` 〈exp1, sto〉 →exp

(gLoc′, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈exp2, sto

′′〉 →exp

(vLoc′ × vLoc′′, sto′)
sto′graph(gLoc) = (noV ertices, propLoc)
i for which Γ(sto′graph, propLoc, i) = vLoc′

j for which Γ(sto′graph, propLoc, j) = vLoc′′

0 < i < noV ertices
0 < j < noV ertices
eLoc′ = Γ(sto′graph, propLoc, noV ertices + (i− 1) · noV ertices + j)

Table E.46: Transition rules for removeEdge from the Standard Environment

222

E. Semantics E.9 Procedures and Functions in Standard Environment

[Add-to-set-true]
envC , envF , envV , envRV , envRT , envP ` 〈exp1, sto〉 →exp (sLoc, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈exp2, sto

′′〉 →exp (v, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈addToSet(exp1, exp2), sto〉
→ sto′[stoset[sLoc 7→ (noElements + 1, l)][l 7→ (v, l′)]]

where l = new(stoset)
l0 = sLoc
li = Γ(sto′set, li−1, 1)
vi = stoset(li)
vi 6= v for all i ∈ {1, 2, ..., noElements}
sto′set(sLoc) = (noElements, l′)

[Add-to-set-false]
envC , envF , envV , envRV , envRT , envP ` 〈exp1, sto〉 →exp (sLoc, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈exp2, sto

′′〉 →exp (v, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈addToSet(exp1, exp2), sto〉 → sto′

where l0 = sLoc
li = Γ(sto′set, li−1, 1)
vi = sto′set(li)
vi = v for some i ∈ {1, 2, ..., noElements}
sto′set(sLoc) = (noElements,−)

Table E.47: Transition rules for the addToSet procedure

223

E.9 Procedures and Functions in Standard Environment E. Semantics

[Remove-from-set]
envC , envF , envV , envRV , envRT , envP ` 〈exp1, sto〉 →exp (sLoc, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈exp2, sto

′′〉 →exp (v, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈removeFromSet(exp1, exp2), sto〉
→ sto′[stoset[prevLoc 7→ (−, nextLoc)]]

sto′set(sLoc) = (noElements,−)
i for which sto′set(Γ(sto′set, sLoc, i)) = v
Loc = Γ(sto′set, sLoc, i)
sto′set(Loc) = (v, nextLoc)
prevLoc = Γ(sto′set, sLoc, i− 1)
0 < i < noElements

Table E.48: Transition rules for the removeFromSet procedure

[Is-in-set-true]
envC , envF , envV , envRV , envRT , envP ` 〈exp1, sto〉 →exp (sLoc, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈exp2, sto

′′〉 →exp (v, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈isInSet(exp1, exp2), sto〉 →b (tt, sto′)

where l0 = sLoc
li = Γ(sto′set, li−1, 1)
sto′set(sLoc) = (noElements,−)
vi = stoset(li)
vi = v for some i ∈ {1, 2, ..., noElements}

[Is-in-set-false]
envC , envF , envV , envRV , envRT , envP ` 〈exp1, sto〉 →exp (sLoc, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈exp2, sto

′′〉 →exp (v, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈isInSet(exp1, exp2), sto〉 →b (ff, sto′)

where l0 = sLoc
li = Γ(sto′set, li−1, 1)
sto′set(sLoc) = (noElements,−)
vi = stoset(li)
vi 6= v for all i ∈ {1, 2, ..., noElements}

Table E.49: Transition rules for the addToSet procedure

224

E. Semantics E.10 Expressions

E.10 Expressions

All expressions are on the form envC , envF , envV , envRV , envRT , envP ` 〈exp, sto〉 →exp

(v, sto′).

[Var-val]
envC , envF , envV , envRV , envRT , envP ` 〈X, sto〉 →exp (v, sto)

where envRV , envV ` X → (typeN , l)
v = stotypeN (l)
typeN ∈ primitiveTypes

[Const-val]
envC , envF , envV , envRV , envRT , envP ` 〈x, sto〉 →exp (v, sto)

where envC(x) = (typeN , l)
v = stotypeN (l)
typeN ∈ primitiveTypes

[Var-val-composite]
envC , envF , envV , envRV , envRT , envP ` 〈X, sto〉 →exp (v, sto)

where envRV , envV ` X → (typeN , l)
v = l
typeN ∈ {set, array, graph, label, weight}

[Record-val]
envC , envF , envV , envRV , envRT , envP ` 〈X, sto〉 →exp (v, sto)

where envRV , envV ` X → (env′V , env′RV)
v = (env′V , env′RV)

Table E.50: Transition rules for variable values

225

E.10 Expressions E. Semantics

[Array-val]
envC , envF , envV , envRV , envRT , envP , temp[arr 7→ l′][v 7→ 0] [dimNo 7→ 0] `

〈ArrayIndex, sto〉 →exp (v′, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈X ArrayIndex, sto〉 →exp (v, sto′)

where envRV , envV ` X → (array, l)
l′ = stoarray(l)
dims = stoarray(l′)
v = stoarray(l′ + dims + v′)

[Array-index]
envC , envF , envV , envRV , envRT , envP ,
temp[dimNo 7→ dimNo′][v 7→ v′′] ` 〈ArrayIndex, sto′′〉 →exp (v′, sto′)

envC , envF , envV , envRV , envRT , envP , temp ` 〈[i] ArrayIndex, sto〉 →exp (v′, sto′)

where envC , envF , envV , envRV , envRT , envP ` 〈i, sto〉 →i (v(3), sto′′)
l = temp(arr)
dims = stoarray(l)
dimNo′ = temp(dimNo) + 1
v′′ = temp(v) + (v(3) − 1) · (size(dimNo′ + 1)·

size(dimNo′ + 2) · . . . · size(dimNo′ + dims))
size(p) = l + p

[Array-index-final]
envC , envF , envV , envRV , envRT , envP , temp ` 〈[i], sto〉 →exp (v′, sto′)

where envC , envF , envV , envRV , envRT , envP ` 〈i, sto〉 →i (v′′, sto′)
v′ = temp(v) + v′′

Table E.51: Transition rules for array values and index

226

E. Semantics E.10 Expressions

[Label-val]
envC , envF , envV , envRV , envRT , envP ` 〈exp, sto〉 →exp (vLoc, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈X(exp), sto〉 →exp (v, sto′)

where envRV , envV ` X → (label, lLoc)
(graphLoc,−) = stolabel(lLoc)
(noV ertices, propLoc) = sto′graph(graphLoc)
vNo for which Γ(sto′graph, propLoc, vNo) = vLoc

and 0 < vNo ≤ noV ertices
(v,−) = sto′label(Γ(sto′label, lLoc, vNo))

[Weight-val]
envC , envF , envV , envRV , envRT , envP ` 〈exp, sto〉 →exp (Loc′ × Loc′′, sto′)

envC , envF , envV , envRV , envRT , envP ` 〈X(exp), sto〉 →exp (v, sto′)

where envRV , envV ` X → (weight, wLoc)
(graphLoc,−) = sto′weight(wLoc)
(noV ertices, propLoc) = sto′graph(graphLoc)
i for which Γ(sto′graph, propLoc, i) = Loc′

and 0 < i ≤ noV ertices
j for which Γ(sto′graph, propLoc, j) = Loc′′

and 0 < j ≤ noV ertices
eNo = (i− 1) · noV ertices + j
(v,−) = sto′weight(Γ(sto′weight, wLoc, eNo))

[Edge-val]
envC , envF , envV , envRV , envRT , envP ` 〈exp1, sto〉 →exp (Loc′, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈exp2, sto

′′〉 →exp (Loc′′, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈(exp1,exp2), sto〉 →exp (Loc′ × Loc′′, sto′)

Table E.52: Transition rules for label, weight, and edge value expressions

227

E.11 Actual Parameters E. Semantics

[Func-Call-Prim]
envPAR, envC , envV , envRV , envRT , envF , temp[i 7→ 0] ` 〈ParA, ∅, ∅, sto〉 →ParA

(env′V , env′RV , sto′′)
envC , envF , envRT , envP ` 〈DV, env′V , env′RV , sto′′〉 →DV (env′′V , env′′RV , sto(3))
envC , envF , env′′V [returnvalue 7→ (typeN , l)], env′′RV , envRT , envP ` 〈S

, sto(3)[stotypeN [l 7→ nil]]〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈FuncN (ParA), sto〉 →exp (v, sto′)

where envF (FuncN) = (S, DV, typeN , envPAR)
typeN ∈ primitiveTypes ∪ {graph, digraph, array, set}
l = new(stotypeN)
envC , envF , envV , envRV , envRT , envP ` 〈returnvalue, sto′〉 →exp (v, sto′)

[Func-Call-Rec]
envPAR, envC , envV , envRV , envRT , envF , temp[i 7→ 0] ` 〈 ParA, ∅, ∅, sto〉

→ParA (env′V , env′RV , sto′′)
envC , envF , envRT , envP ` 〈DV typeN returnvalue;, env′V , env′RV , sto′′〉 →DV

(env′′V , env′′RV , sto(3))
envC , envF , env′′V , env′′RV , envRT , envP ` 〈S, sto(3)〉 → sto′

envC , envF , envV , envRV , envRT , envP ` 〈FuncN (ParA), sto〉 →exp (v, sto′)

where envF (FuncN) = (S, DV, typeN , envPAR)
typeN ∈ RecordTypes

env′′RV (returnvalue) = (env
(3)
V , env

(4)
RV)

v = (env
(3)
V , env

(4)
RV)

Table E.53: Transition rules for function calls

E.11 Actual Parameters

Actual parameters are on the form
envPAR, envV , envRV , envRT , envF , temp ` 〈ParA, env′′V , env′′RV , sto〉 →ParA (env′V , env′RV , sto′).

228

E. Semantics E.12 String Expressions

[ParA-prim]
envC , envF , envRT , envP ` 〈typeN var := x′, env′V [x′ 7→ (typeN , l)], env′RV ,

sto′[stotypeN [l 7→ v]]〉 →DV (env′′V , env′′RV , sto′′)
envPAR, envC , envV , envRV , envF , envP , temp[i 7→ i′] ` 〈ParA, env′′V , env′′RV ,

sto′′〉 →ParA (env
(3)
V , env

(3)
RV , sto(3))

envPAR, envC , envV , envRV , envRT , envF , envP temp ` 〈exp,ParA, env′V , env′RV , sto〉
→ParA (env

(3)
V , env

(3)
RV , sto(3))

where i′ = temp(i) + 1
envPAR(i′) = (var, typeN , ff)
envC , envF , envV , envRV , envRT , envP ` 〈exp, sto〉 → (v, sto′)
l = new(typeN)
typeN ∈ primitiveTypes

[ParA-comp]
envC , envF , envRT , envP ` 〈typeN var := x′, env′V [x′ 7→ (type′N , l)], env′RV ,

sto′〉 →DV (env′′V , env′′RV , sto′′)
envPAR, envC , envV , envRV , envF , envP , temp[i 7→ i′] ` 〈ParA, env′′V , env′′RV ,

sto′′〉 →ParA (env
(3)
V , env

(3)
RV , sto(3))

envPAR, envC , envV , envRV , envRT , envF , envP temp ` 〈exp,ParA, env′V , env′RV , sto〉
→ParA (env

(3)
V , env

(3)
RV , sto(3))

where i′ = temp(i) + 1
envPAR(i′) = (var, typeN , ff)
envC , envF , envV , envRV , envRT , envP ` 〈exp, sto〉 → (l, sto′)
type′N = set if typeN = set of type
type′N = array if typeN = array of type
type′N = label if typeN = label of type
type′N = weight if typeN = weight of type

Table E.54: Transition rules for actual parameters

E.12 String Expressions

String expressions are expressions and therefore use the semantic form of the general
expressions (can be found in E.57

229

E.12 String Expressions E. Semantics

[ParA-ref]
envC , envF , envRT , envP ` 〈type′N ref var := ref, env′V [ref 7→ (typeN , l)],

env′RV , sto〉 →DV (env′′V , env′′RV , sto′)
envPAR, envC , envV , envRV , envF , envP , temp[i 7→ i′] ` 〈ParA, env′′V , env′′RV , sto′〉

→ParA (env
(3)
V , env

(3)
RV , sto′′)

envPAR, envV , envRV , envRT , envF , envP , temp ` 〈X,ParA, env′V , env′RV , sto〉
→ParA (env

(3)
V , env

(3)
RV , sto′′)

where i′ = temp(i) + 1
envPAR(i′) = (var, type′N , tt)
envRV , envV ` X → (typeN , l)

[ParA-empty]
envPAR, envC , envV , envRV , envRT , envF , envP , temp ` 〈ε, env′V , env′RV , sto〉

→ParA (env′V , env′RV , sto)

Table E.55: Transition rules for actual reference parameters, and the empty param-
eter

230

E. Semantics E.12 String Expressions

[ParA-rec]
envC , envF , envRT , envP ` 〈typeN var := x′, env′V , env′RV [x′ 7→ (env

(4)
V , env

(4)
RV)],

sto′〉 →DV (env′′V , env′′RV , sto′′)
envPAR, envC , envV , envRV , envF , envP , temp[i 7→ i′] ` 〈ParA, env′′V , env′′RV ,

sto′′〉 →ParA (env
(3)
V , env

(3)
RV , sto(3))

envPAR, envC , envV , envRV , envRT , envF , envP temp ` 〈exp,ParA, env′V , env′RV , sto〉
→ParA (env

(3)
V , env

(3)
RV , sto(3))

where i′ = temp(i) + 1
envPAR(i′) = (var, typeN , ff)
envC , envF , envV , envRV , envRT , envP ` 〈exp, sto〉 → ((env

(4)
V , env

(4)
RV), sto′)

typeN ∈ RecordType

[ParA-rec-ref]
envC , envF , envRT , envP ` 〈typeN ref var := x′, env′V , env′RV [x′ 7→ (env

(4)
V , env

(4)
RV)],

sto〉 →DV (env′′V , env′′RV , sto′′)
envPAR, envC , envV , envRV , envF , envP , temp[i 7→ i′] ` 〈ParA, env′′V , env′′RV ,

sto′′〉 →ParA (env
(3)
V , env

(3)
RV , sto′)

envPAR, envC , envV , envRV , envRT , envF , envP temp ` 〈exp,ParA, env′V , env′RV , sto〉
→ParA (env

(3)
V , env

(3)
RV , sto′)

where i′ = temp(i) + 1
envPAR(i′) = (var, typeN , ff)
envRV , envV ` X → (env

(4)
V , env

(4)
RV)

typeN ∈ RecordType

Table E.56: Transition rules for actual record parameters

231

E.12 String Expressions E. Semantics

[Concatenation]
envC , envF , envV , envRV , envRT , envP ` 〈w1, sto〉 →w (v1, sto

′′)
envC , envF , envV , envRV , envRT , envP ` 〈w2, sto

′′〉 →w (v2, sto
′)

envC , envF , envV , envRV , envRT , envP ` 〈w1&w2, sto〉 →w (v, sto′)

where v = v1 ◦ v2

[Litt-string]
envC , envF , envV , envRV , envRT , envP ` 〈str, sto〉 →w (v, sto)

where LittType(str) = v

Table E.57: Transition rules for actual parameters

232

E. Semantics E.13 Boolean Expressions

E.13 Boolean Expressions

Boolean expressions are expressions and therefore use the semantic form of the gen-
eral expressions.

infty < n → ff where n 6= infty

infty > n → tt where n 6= infty

n = infty → ff where n 6= infty

infty = infty → tt

−infty = −infty → tt

n 6= infty → tt where n 6= infty

−infty < n → tt where n 6= −infty

−infty > n → ff where n 6= −infty

−infty = n → ff where n 6= −infty

n = −infty → ff where n 6= −infty

233

E.13 Boolean Expressions E. Semantics

[Equals1]
envC , envF , envV , envRV , envRT , envP ` 〈n1, sto〉 →n (v1, sto

′′)
envC , envF , envV , envRV , envRT , envP ` 〈n2, sto

′′〉 →n (v2, sto
′)

envC , envF , envV , envRV , envRT , envP ` 〈n1=n2, sto〉 →b (tt, sto′)

where v′1 = v′2, v
′
1 = floatV alue(v1), v′2 = floatV alue(v2)

[Equals2]
envC , envF , envV , envRV , envRT , envP ` 〈n1, sto〉 →n (v1, sto

′′)
envC , envF , envV , envRV , envRT , envP ` 〈n2, sto

′′〉 →n (v2, sto
′)

envC , envF , envV , envRV , envRT , envP ` 〈n1=n2, sto〉 →b (ff, sto′)

where v′1 6= v′2, v
′
1 = floatV alue(v1), v′2 = floatV alue(v2)

[Greater-than1]
envC , envF , envV , envRV , envRT , envP ` 〈n1, sto〉 →n (v1, sto

′′)
envC , envF , envV , envRV , envRT , envP ` 〈n2, sto

′′〉 →n (v2, sto
′)

envC , envF , envV , envRV , envRT , envP ` 〈n1>n2, sto〉 →b (tt, sto′)

where v′1 > v′2, v
′
1 = floatV alue(v1), v′2 = floatV alue(v2)

[Greater-than2]
envC , envF , envV , envRV , envRT , envP ` 〈n1, sto〉 →n (v1, sto

′′)
envC , envF , envV , envRV , envRT , envP ` 〈n2, sto

′′〉 →n (v2, sto
′)

envC , envF , envV , envRV , envRT , envP ` 〈n1>n2, sto〉 →b (ff, sto′)

where v′1 6> v′2, v
′
1 = floatV alue(v1), v′2 = floatV alue(v2)

[Lesser-than1]
envC , envF , envV , envRV , envRT , envP ` 〈n1, sto〉 →n (v1, sto

′′)
envC , envF , envV , envRV , envRT , envP ` 〈n2, sto

′′〉 →n (v2, sto
′)

envC , envF , envV , envRV , envRT , envP ` 〈n1<n2, sto〉 →b (tt, sto′)

where v′1 < v′2, v
′
1 = floatV alue(v1), v′2 = floatV alue(v2)

[Lesser-than2]
envC , envF , envV , envRV , envRT , envP ` 〈n1, sto〉 →n (v1, sto

′′)
envC , envF , envV , envRV , envRT , envP ` 〈n2, sto

′′〉 →n (v2, sto
′)

envC , envF , envV , envRV , envRT , envP ` 〈n1<n2, sto〉 →b (ff, sto′)

where v′1 6< v′2, v
′
1 = floatV alue(v1), v′2 = floatV alue(v2)

Table E.58: Transition rules for boolean expressions

234

E. Semantics E.13 Boolean Expressions

[Greater-equal-1]
envC , envF , envV , envRV , envRT , envP ` 〈n1, sto〉 →n (v1, sto

′′)
envC , envF , envV , envRV , envRT , envP ` 〈n2, sto

′′〉 →n (v2, sto
′)

envC , envF , envV , envRV , envRT , envP ` 〈n1>=n2, sto〉 →b (tt, sto′)

where v′1 > v′2 or v′1 = v′2, v
′
1 = floatV alue(v1), v′2 = floatV alue(v2)

[Lesser-equal1]
envC , envF , envV , envRV , envRT , envP ` 〈n1, sto〉 →n (v1, sto

′′)
envC , envF , envV , envRV , envRT , envP ` 〈n2, sto

′′〉 →n (v2, sto
′)

envC , envF , envV , envRV , envRT , envP ` 〈n1<=n2, sto〉 →b (tt, sto′)

where v′1 < v′2 or v′1 = v′2, v
′
1 = floatV alue(v1), v′2 = floatV alue(v2)

[Not-equal1]
envC , envF , envV , envRV , envRT , envP ` 〈n1, sto〉 →n (v1, sto

′′)
envC , envF , envV , envRV , envRT , envP ` 〈n2, sto

′′〉 →n (v2, sto
′)

envC , envF , envV , envRV , envRT , envP ` 〈n1<>n2, sto〉 →b (ff, sto′)

where v′1 = v′2, v
′
1 = floatV alue(v1), v′2 = floatV alue(v2)

[Not-equal2]
envC , envF , envV , envRV , envRT , envP ` 〈n1, sto〉 →n (v1, sto

′′)
envC , envF , envV , envRV , envRT , envP ` 〈n2, sto

′′〉 →n (v2, sto
′)

envC , envF , envV , envRV , envRT , envP ` 〈n1<>n2, sto〉 →b (tt, sto′)

where v′1 6= v′2, v
′
1 = floatV alue(v1), v′2 = floatV alue(v2)

Table E.59: Transition rules for boolean expressions

235

E.13 Boolean Expressions E. Semantics

[Not1]
envC , envF , envV , envRV , envRT , envP ` 〈b, sto〉 →b (tt, sto′)

envC , envF , envV , envRV , envRT , envP ` 〈not b, sto〉 →b (ff, sto′)

[Not2]
envC , envF , envV , envRV , envRT , envP ` 〈b, sto〉 →b (ff, sto′)

envC , envF , envV , envRV , envRT , envP ` 〈not b, sto〉 →b (tt, sto′)

[Bool-equals1]
envC , envF , envV , envRV , envRT , envP ` 〈b1, sto〉 →b (tt, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈b2, sto

′′〉 →b (tt, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈b1 = b2, sto〉 →b (tt, sto′)

[Bool-equals2]
envC , envF , envV , envRV , envRT , envP ` 〈b1, sto〉 →b (ff, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈b2, sto

′′〉 →b (tt, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈b1 = b2, sto〉 →b (ff, sto′)

[Bool-equals3]
envC , envF , envV , envRV , envRT , envP ` 〈b1, sto〉 →b (tt, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈b2, sto

′′〉 →b (ff, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈b1 = b2, sto〉 →b (ff, sto′)

[Bool-equals4]
envC , envF , envV , envRV , envRT , envP ` 〈b1, sto〉 →b (ff, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈b2, sto

′′〉 →b (ff, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈b1 = b2, sto〉 →b (tt, sto′)

Table E.60: Transition rules for boolean expressions

236

E. Semantics E.13 Boolean Expressions

[Bool-and1]
envC , envF , envV , envRV , envRT , envP ` 〈b1, sto〉 →b (tt, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈b2, sto

′′〉 →b (tt, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈b1 and b2, sto〉 →b (tt, sto′)

[Bool-and2]
envC , envF , envV , envRV , envRT , envP ` 〈b1, sto〉 →b (ff, sto′)

envC , envF , envV , envRV , envRT , envP ` 〈b1 and b2, sto〉 →b (ff, sto′)

[Bool-and3]
envC , envF , envV , envRV , envRT , envP ` 〈b1, sto〉 →b (tt, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈b2, sto

′′〉 →b (ff, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈b1 and b2, sto〉 →b (ff, sto′)

[Bool-or2]
envC , envF , envV , envRV , envRT , envP ` 〈b1, sto〉 →b (tt, sto′)

envC , envF , envV , envRV , envRT , envP ` 〈b1 or b2, sto〉 →b (tt, sto′)

Table E.61: Transition rules for boolean expressions

237

E.13 Boolean Expressions E. Semantics

[Bool-or3]
envC , envF , envV , envRV , envRT , envP ` 〈b1, sto〉 →b (ff, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈b2, sto

′′〉 →b (tt, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈b1 or b2, sto〉 →b (tt, sto′)

[Bool-or4]
envC , envF , envV , envRV , envRT , envP ` 〈b1, sto〉 →b (ff, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈b2, sto

′′〉 →b (ff, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈b1 or b2, sto〉 →b (ff, sto′)

[Bool-xor1]
envC , envF , envV , envRV , envRT , envP ` 〈b1, sto〉 →b (tt, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈b2, sto

′′〉 →b (tt, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈b1 xor b2, sto〉 →b (ff, sto′)

[Bool-xor2]
envC , envF , envV , envRV , envRT , envP ` 〈b1, sto〉 →b (tt, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈b2, sto

′′〉 →b (ff, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈b1 xor b2, sto〉 →b (tt, sto′)

[Bool-xor3]
envC , envF , envV , envRV , envRT , envP ` 〈b1, sto〉 →b (ff, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈b2, sto

′′〉 →b (tt, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈b1 xor b2, sto〉 →b (tt, sto′)

[Bool-xor4]
envC , envF , envV , envRV , envRT , envP ` 〈b1, sto〉 →b (ff, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈b2, sto

′′〉 →b (ff, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈b1 xor b2, sto〉 →b (ff, sto′)

[Bool-parent]
envC , envF , envV , envRV , envRT , envP ` 〈b, sto〉 →b (v, sto′)

envC , envF , envV , envRV , envRT , envP ` 〈(b), sto〉 →b (v, sto′)

[Bool-true]
envC , envF , envV , envRV , envRT , envP ` 〈true, sto〉 →b (tt, sto)

[Bool-false]
envC , envF , envV , envRV , envRT , envP ` 〈false, sto〉 →b (ff, sto)

Table E.62: Transition rules for boolean expressions

238

E. Semantics E.14 Arithmetic Expressions

[Convert-integer-1]
envC , envF , envV , envRV , envRT , envP ` 〈i, sto〉 →a (v′, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈float op f, sto′′〉 →f (v, sto′)

envC , envF , envV , envRV , envRT , envP ` 〈i op f, sto〉 →f (v, sto′)

where float = LittType−1(floatV alue(v′))

[Convert-integer-2]
envC , envF , envV , envRV , envRT , envP ` 〈i, sto〉 →a (v′, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈float op f, sto′′〉 →f (v, sto′)

envC , envF , envV , envRV , envRT , envP ` 〈f op i, sto〉 →f (v, sto′)

where float = LittType−1(floatV alue(v′))

[Convert-integer-3]
envC , envF , envV , envRV , envRT , envP ` 〈i1, sto〉 →a (v′, sto(3))
envC , envF , envV , envRV , envRT , envP ` 〈i2, sto(3)〉 →a (v′′, sto′′)
envC , envF , envV , envRV , envRT , envP ` 〈float1 / float2, sto

′′〉 →f (v, sto′)
envC , envF , envV , envRV , envRT , envP ` 〈i1 / i2, sto〉 →f (v, sto′)

where float1 = LittType−1(floatV alue(v′))

where float2 = LittType−1(floatV alue(v′′))

Table E.63: Transition rules for aritmetic expressions

E.14 Arithmetic Expressions

Arithmetic expressions are expressions and therefore use the semantic form of the
general expressions.

239

E.14 Arithmetic Expressions E. Semantics

[Plus-integer]
envC , envF , envV , envRV , envRT , envP ` 〈i1, sto〉 →i (v1, sto

′′)
envC , envF , envV , envRV , envRT , envP ` 〈i2, sto′′〉 →i (v2, sto

′)
envC , envF , envV , envRV , envRT , envP ` 〈i1+i2, sto〉 →i (v, sto′)

where v = v1 + v2

[Minus-integer]
envC , envF , envV , envRV , envRT , envP ` 〈i1, sto〉 →i (v1, sto

′′)
envC , envF , envV , envRV , envRT , envP ` 〈i2, sto′′〉 →i (v2, sto

′)
envC , envF , envV , envRV , envRT , envP ` 〈i1−i2, sto〉 →i (v, sto′)

where v = v1 − v2

[Mult-integer]
envC , envF , envV , envRV , envRT , envP ` 〈i1, sto〉 →i (v1, sto

′′)
envC , envF , envV , envRV , envRT , envP ` 〈i2, sto′′〉 →i (v2, sto

′)
envC , envF , envV , envRV , envRT , envP ` 〈i1∗i2, sto〉 →i (v, sto′)

where v = v1 · v2

[Div-integer]
envC , envF , envV , envRV , envRT , envP ` 〈i1, sto〉 →i (v1, sto

′′)
envC , envF , envV , envRV , envRT , envP ` 〈i2, sto′′〉 →i (v2, sto

′)
envC , envF , envV , envRV , envRT , envP ` 〈i1 div i2, sto〉 →i (v, sto′)

where v = v1 ÷ v2

[Mod-integer]
envC , envF , envV , envRV , envRT , envP ` 〈i1, sto〉 →i (v1, sto

′′)
envC , envF , envV , envRV , envRT , envP ` 〈i2, sto′′〉 →i (v2, sto

′)
envC , envF , envV , envRV , envRT , envP ` 〈i1 mod i2, sto〉 →i (v, sto′)

where v = v1 mod v2

[Parent-integer]
envC , envF , envV , envRV , envRT , envP ` 〈i, sto〉 →i (v, sto′)

envC , envF , envV , envRV , envRT , envP ` 〈(i), sto〉 →i (v, sto′)

Table E.64: Transition rules for integer expressions

240

E. Semantics E.14 Arithmetic Expressions

[Plus-float]
envC , envF , envV , envRV , envRT , envP ` 〈f1, sto〉 →f (v1, sto

′′)
envC , envF , envV , envRV , envRT , envP ` 〈f2, sto

′′〉 →f (v2, sto
′)

envC , envF , envV , envRV , envRT , envP ` 〈f1+f2, sto〉 →f (v, sto′)

where v = v1 + v2

[Minus-float]
envC , envF , envV , envRV , envRT , envP ` 〈f1, sto〉 →f (v1, sto

′′)
envC , envF , envV , envRV , envRT , envP ` 〈f2, sto

′′〉 →f (v2, sto
′)

envC , envF , envV , envRV , envRT , envP ` 〈f1−f2, sto〉 →f (v, sto′)

where v = v1 − v2

[Mult-float]
envC , envF , envV , envRV , envRT , envP ` 〈f1, sto〉 →f (v1, sto

′′)
envC , envF , envV , envRV , envRT , envP ` 〈f2, sto

′′〉 →f (v2, sto
′)

envC , envF , envV , envRV , envRT , envP ` 〈f1∗f2, sto〉 →f (v, sto′)

where v = v1 · v2

[Division-float]
envC , envF , envV , envRV , envRT , envP ` 〈f1, sto〉 →f (v1, sto

′′)
envC , envF , envV , envRV , envRT , envP ` 〈f2, sto

′′〉 →f (v2, sto
′)

envC , envF , envV , envRV , envRT , envP ` 〈f1/f2, sto〉 →f (v, sto′)

where v = v1/v2

[Parent-float]
envC , envF , envV , envRV , envRT , envP ` 〈f, sto〉 →f (v, sto′)

envC , envF , envV , envRV , envRT , envP ` 〈(f), sto〉 →f (v, sto′)

Table E.65: Transition rules for float expressions

241

E.14 Arithmetic Expressions E. Semantics

[Litt-float]
envC , envF , envV , envRV , envRT , envP ` 〈float, sto〉 →f (v, sto)

where LittType(float) = v

[Litt-integer]
envC , envF , envV , envRV , envRT , envP ` 〈int, sto〉 →i (v, sto)

where LittType(int) = v

[Infty]
envC , envF , envV , envRV , envRT , envP ` 〈infty, sto〉 →f (v, sto)

where v = infty
[-Infty]
envC , envF , envV , envRV , envRT , envP ` 〈-infty, sto〉 →f (v, sto)

where v = −infty

Table E.66: Transition rules for Litt-float, Litt-int, infty, and -infty

242

	I Analysis Document
	Problem Analysis
	Programming Graphs
	Problem Definition
	Focus
	Selection of Method
	Target Audience

	Applied Graph Algorithms
	Introduction to Graphs
	Types of Graphs
	Representation of Graphs

	Dijkstra's Algorithm
	Early View of the Language Requirements

	Analysis of Language Features
	Primitive Data Types
	Composite Data Types
	Arithmetic and Boolean Expressions
	Control Structures
	Loops

	Input and Output
	Concurrency
	Mutual Exclusion

	Error Handling
	Extensions

	Programming Paradigms
	The Four Main Programming Paradigms
	The Imperative Paradigm
	The Functional Paradigm
	The Logical Paradigm
	The Object-Oriented Paradigm

	Language Evaluation Criteria
	Criteria Assessments

	II Design Document
	Design Choices
	Programming Paradigm
	Primitive Data Types
	Operators
	Composite Data Types
	Variable References
	Declaration of Variables and Constants
	Control Structures
	Functions and Procedures
	Scope Rules
	Error handling
	Concurrency
	Input and Output
	Graphs in DOGS
	Vertices and Edges
	Labels and Weights

	The DOGS Language
	Syntax Considerations
	The ``Dangling Else'' Problem
	Precedence Rules

	DOGS Syntax in BNF
	V-Names
	Expressions
	Precedence Rules
	Commands
	Parameters
	Type-denoters
	Declarations
	Program
	Lexicon

	Classification of the DOGS Grammar
	LL Grammars
	LR Grammars
	The DOGS Grammar

	Standard Environment
	Dijkstras Algorithm in DOGS
	Presentation of Dijkstra's Algorithm in DOGS

	Type System in DOGS
	Introducing Type Systems
	Well-behaved Programs

	Formalizing Type Systems
	Typing Judgments
	Defining the Type Rules in DOGS
	Abstract Syntax
	Types and Judgements in DOGS

	Records
	Declarations
	Expressions
	Assignments

	DOGS Operational Semantics
	The Environment-Store-Model
	Mathematical Shortcuts
	Environments
	Stores

	Transition Systems in DOGS
	Declarations
	Expressions
	Commands
	Standard environment

	III Implementation Document
	Compiler Design Choices
	Choosing a Virtual Machine
	Java Virtual Machine
	Triangle Abstract Machine
	Common Language Runtime
	Assembler Interface

	Compiler Passes
	Syntax Trees
	Concrete Syntax Trees
	Abstract Syntax Trees

	Discussion of Compiler-Compiler Tools
	SableCC
	JLex and CUP
	JavaCC

	SableCC Framework
	Visitor Pattern
	Extended Visitor Pattern
	SableCC Classes

	Compiler Design
	Compiler Considerations
	StandardEnvironment
	Library
	ErrorList
	Packages

	Syntactical Analysis
	Contextual Analysis
	Optimizer
	Contextual Checks
	TypeChecker

	Runtime Organization
	Implementing the Types
	Standard Environment

	Code Generation

	Testing dogsc
	Hello Dogs
	Testing Dijkstra's Algorithm in DOGS

	IV Conclusion
	Conclusion
	Evaluating the Design Criteria
	Operational Semantics and JVM
	Realization of DOGS
	Future Course

	V Bibliography
	Bibliography

	VI Appendix
	Standard Environment
	Types
	Primitives
	Composite types
	Graph types
	Graph properties

	Functions and Procedures
	Input / Output
	Conversion
	Sets
	Arrays
	Graphs

	DOGS Syntax in BNF
	SableCC grammar for DOGS
	DOGS Formal Type System
	Type Rules
	Declaration Rules
	Command Rules
	Expression Rules

	Semantics
	Generalized Variables
	Declarations
	Record type Declarations
	Global Constant Declarations
	Procedure and Function Declarations
	Formal-Parameter Declarations
	Program and Import
	Commands
	Procedures and Functions in Standard Environment
	Expressions
	Actual Parameters
	String Expressions
	Boolean Expressions
	Arithmetic Expressions

